遷喬小学校創立134周年

一ヶ月ほど前に母校の遷喬小学校 の校長先生より電話があり、創立134周年記念式典での 講話を依頼されました。 こういう式典で話をするのは、少なくとも世間的に成功者と言える方の役目で、自分には無縁のことと思って いたので、当惑しましたが、校長先生の熱心な依頼に、思わず承諾してしまいました。

現校長先生は、私の死んだ姉と同じくらいの年齢の、とてもチャーミングな女性です。以前に一献交わす機会があり、 学童期に、お名前の”和江(むつえ)”を(当時の)先生に正しく呼ばれたことがなく、いつも”かずえ”と呼ばれて悲しかった こと等をお聞きしていたので、あのお優しいオーラは、挫折を知る者だけが持つ独特のものだと理解していました。
ということで、いくらでも適役がおられるとは思ったものの、意図あって挫折だらけの人生を歩んで来た私を選んでくださった のだと勝手に解釈して、講話をお引き受けすることにしたのです。

それでは、恥をしのんで、今朝発表させていただいた講話をご紹介します。

”あなたたちの未来は明るい”

おはようございます。遷喬小学校創立134周年、おめでとうございます。

私の名前は、『まつもと たつろう』と言います。 「たつ」は、お正月に揚(あ)げる凧によく書かれている、りゅう(龍)という漢字です。「ろう」は、たろう(太郎)、じろう(次郎)の郎です。 私は、遷喬小学校を昭和39年、1964年、今から42年前に卒業した、あなたたちの先輩です。多分、あなたたちのお父さんより 年上で、おじいちゃんより年下の、ちょうどその中間あたりの年齢だと思います。

今日はみなさんの前でお話をさせていただくことを、大変誇りに思い、感謝しています。

さて、みなさんは、多分、これから言う3つのグループのどれかに入ると思います。 Aのグループは、今最高に幸せで仕方がない人です。 そしてBのグループは、どちらとも言えない人、そしてCのグループは 不幸せな人です。実は、私は少年時代はBか、ともすればCのグループでしたが、今はとても幸せです。
今日は、Cのグループにいた私がどうやって今幸せになったかをお話したいと思います。

なぜ私が今幸せなのかと言うと、今から12年前に私は望遠鏡に関する発明をして特許を取り、その発明を利用した、 両眼で覗ける望遠鏡を作り始めたのですが、十年ほど前から広まったインターネットによって、お客さんが増え、日本や世界の 天文マニアの人が私の望遠鏡を注文してくれるようになったからです。

私が作っている天体望遠鏡は、上下左右がさかさまにならないで、とてもはっきり見えるもので、同じ様な望遠鏡やカメラ を作っている、ニコンやミノルタの社員の人でも、私に注文をして来ます。

望遠鏡の工作は、金属を切ったり削ったりするので、紙や木を切るように簡単ではありません。 私はそういう専門の大学を出たわ けではないのですが、全て大人になって社会に出てから自分で勉強して技術を身に付けました。また、海外からの問い合わせは 英語のメールを扱いますが、英語も自分で勉強し、今では辞書に全く頼らずに海外のマニアとメールを交換しています。

私の本業はメガネ屋ですが、星を見るという自分の趣味から始まった望遠鏡作りで、世界で自分しか作れない物を持った ことと、世界中の天文マニアの人たちから頼られることで、物作りの喜びを知り、今が一番幸せだと思っています。

あなたたちも、将来、物を作る仕事か、物を育てる仕事か、それらの人たちが作った物を売る仕事か、それらの人の手助けをする 仕事か、人に何かを教える仕事かのどれかの仕事に就くはずです。 どんな仕事に就いても、自分の働きが人の役に立っている、 という実感が持てたら、私たちはとても幸せになります。

私は姉二人を持つ末っ子として育ちました。小学校の頃から、二人の姉は勉強が良く出来ましたが、私は出来ませんでした。 成績はいつも中間辺りをうろうろしていたように記憶します。かと言って、スポーツでも、少し鉄棒が得意だったり、 短距離走が速かった程度で、それも一番だったことはありませんでした。 小学?年の時、リズム感が悪かった私は、 足踏みのリズムがおかしいと、担任の先生に皆の前で悪い見本でやらされ、先生に、「まるで芝居の“馬の足”だ」 と言われました。

私はそんな自分が嫌いでした。
小学校時代のそんな自分を作り変えようという強い決意で入った中学でしたが、陸上部に入部早々、苦手の長距離走でしごかれ、 1週間でケツを割ってしまいました。その後に入ったバスケットボール部でも長続きせず、勉強でも目立つことが出来ず、 二人の姉は鳥取西高に行ったのですが、姉弟で私一人が鳥取商業高校に進みました。

鳥商では、バック転も鉄棒の車輪も出来ない状態から器械体操を始めました。過酷な練習で、手の皮むけや筋肉痛が治る間はなく、 最初の1年は下痢が続き、3年間で3度も骨折し、体はボロボロになりましたが、今度はがんばり抜き、高校3年の時に、第24回 長崎国体に出場しました。挫折(ざせつ)と絶望(ぜつぼう)の少年時代でしたが、これがささやかで初めて見た一筋(ひとすじ) の光でした。

しかし、私の親は、私が家業の眼鏡屋を継ぐのが当然だと考えていましたので、ただ国体に出場したくらいでは、私を別の道に進ませる気はありませんでした。 当時の自分としても、いくら体操が好きだと言っても、体操で自分が理想とするところまで到達する自信はなかったので、 確実なレールが敷かれた家業を継ぐしかありませんでした。

こうして、また新たな挫折(ざせつ)を経て、家業に従事しながら始めた趣味が星を見ることであり、それがそれまでの天 体望遠鏡の使い勝手に疑問を持つきっかけとなり、さきほど紹介した天体望遠鏡関係の発明につながったわけです。

人生は、あなたたちが考えるよりずっと長いものです。今勝っている人がずっと勝っているとは限らないし、今負けている人がず っと負けているとは限りません。今勝っている人は、負けている人を思いやり、また、将来負けないようにがんばり、今負けてい る人は、将来必ず勝つチャンスがやって来ることを信じてがんばれば良いのです。

最近、小学生の自殺をよく耳にして、胸が痛みます。挫折(ざせつ)の連続の少年時代を過ごした私には、 彼らの気持ちが痛いほど良く分かります。さきほど説明したCのグループにいる人たちにとっては、少年時代ほどつらい 時期はないのかも分かりません。先が見えない将来は、ちょうど出口の見えないトンネルのように不安に感じるものです。
しかし、Cのグループの人たちには、今が一番つらいけど、それはずっと続くものではないこと、また、喉がからからに乾いた後 の水が美味しいように、その後に来る幸せは、Aのグループの人たちが味わえないほど素晴らしいものがあるということ を知って欲しいと、強く思います。

Aのグループの人たち、今最高に幸せな人は、家に帰ってから、どうして幸せなのかをよく考えてみてください。 今すぐ分かるか、何十年後に分かるか、わかりませんが、もし誰かのお陰であると分かったら、その人たちにお礼を言ってください。そして、幸せでないと思っている人たちを思いやってください。

そして、もし、あなたたちの中で、明日を見たくないほどつらい方がいたら、担任の先生か、あなたが一番話しやすい 先生と、自分の親につらい理由を話してください。
もし、どうしても回りに話せる人がいなかったら、いつでも私の所に来て、そのわけを話してください。私の家は、 市役所の前、岡本PTA会長の岡本自転車店の1軒置いた隣のメガネ屋です。

とても10分間では、お伝えたいことのほんの少ししかお話できませんでしたが、最後に、一番お伝えしたいことを繰り返して おきます。

子供時代はつらいものです。でも、永久に苦しいということは絶対にありません。また、あなたの親や先生はいつもあな たのことを想っているということです。それはたいてい、ずっと後になってから分かるものです。

私の研究が4年前に、スカイパーフェクTVの科学番組になって全国放送された時(ネットでは現在でも常時視聴可)に、 46年前に遷喬小学校で私のことを「まるで芝居の“馬の足”だ。」と言った先生がものすご く喜んで、祝ってくださいました。

大人になることは決して怖いことではありません。子供時代には体験できない、楽しいことがたくさんあります。ですから、 あなたたちの未来はとっても明るいということを知っておいてください。

今日は、私の下手な話を最後まで聞いてくれて、ありがとう。
さようなら。

人類の至宝(補足2)

もう少し、逃げないでお付き合いください。 私は数学が理解できなくて悶絶し、一時は絶望した経験の持ち主です。 ただ、 それは自分に数学の適性が無かったからでも、馬鹿だったからでもないことに、ずっと後になって気付きました。  早い段階で気付いていれば、自分の人生はまた変わったものになっただろうと思っています。  私は、理解できない感覚を肌で知っているので、分からない方に理解させることへの確信を持っているのです。

過去2回のご説明は、やや性急で、準備運動が足りずに、筋を痛めてしまった方もあるやも知れません。 今日は、より基礎的な部分のおさらいをさせていただこうと思います。

2の2乗は4ですね。 指数を覚え始めの中学生に、「それでは3の2乗は何?」と尋ねると、大抵、 「3の2乗=6です。」と答えますが、3の2乗=3×3=9 が正解です。  初めての人にとっては、このように、累乗の意味を理解するだけでも、ちょっとしたハードルがあるのです。

それでは、(2の2乗)と(2の3乗)を掛け合わせたらどうなるでしょう?  (2×2)×(2×2×2)=2×2×2×2×2=2の5乗(32)になるのです。
これより、2^2 * 2^3=2^(2+3)=2^5 ( ^ は乗、* は× のこと)のように計算方法を定義することが出来るのです。

同様に、(2の5乗)÷(2の2乗)を考えてみましょう。
(2×2×2×2×2)÷(2×2)=(2×2×2×2×2)/(2×2)=2×2×2 より、
今度は 2^5 ÷ 2^2 = 2^(5-2)=2^3 ということで、 指数の計算の約束がどう決められるかが分かると思います。

この約束に従って、(2の2乗)÷(2の2乗)を計算してみましょう。 同じ数を同じ数で割るのですから、当然答えは1ですが、 ここでは、忠実にさきほどの指数計算の手順を踏んでみましょう。
2^2÷2^2=2^(2-2)=2^0=1 となるわけです。 これより、任意の実数 a の0乗が常に1になることが納得いただけた と思います。
これでも納得しない方があるかも知れないので、ダメ押しにもう一つ例を挙げます。
(2の3乗)に(2の0乗)を掛けると、2の(3+0)乗=(2の3乗)になります。(2の0乗)が1以外では、この計算方法の 約束が成り立ちませんね。

前置きが随分長くなりましたが、以上が e^iθに、θ=0を代入すると、e^iθ=e^0=1となる理由です。(i×0=0)

また、任意の複素数が、2つの実数、a,b と虚数 i を用いて、x軸を実軸、y軸を虚数軸として、ベクトル同様に、 a + bi と複素平面上に表すことができることは、各自でおさらいしていただく必要があります。(昔の教科書や、関連Webサイトを ご参照ください。)

メガネの度数(2)

快適なメガネの度数の決定に腐心する理由の主なものは、私たちの眼が二つあることです。  このことを説明するのに格好のお客さん(Aさん:20歳代)が今日見えたので、実例に即してお話してみます。

Aさんの裸眼視力は、右が0.15で、左が0.05、一般の方が見ると、かなり眼が悪い方だと思われるでしょう。  しかし、中等度以上の近視(普通の近視)であれば、裸眼視力は0.1以下が普通であり、特に珍しい眼ではなく、 また近視自体は病気ではなく、ある意味、身長のばらつきのように、標準の屈折状態から少し外れた眼だと理解しても 良いと思います。

問題は、この方の左右の矯正度数がどうなるかです。裸眼視力に左右差があっても、実際の眼の度数(屈折異常度) は大差がない場合もあります。

検査結果は、右=-2.00Dで、左=-4.25D (これに加えて少量の乱視もあった。)で、矯正視力は、左右共1.0くらい出ていました。(矯正視力 は個人差がある。)

このままの度数でメガネを作るとどうなるか。5分も掛ければ頭が痛くなり、眼も開けていられなくなるのが普通です。  レンズの歓迎されない副作用として、像の大きさが変わってしまうのです。近視用の凹レンズの場合は、度が強いほど 物が小さく見えるという副作用があるので、左眼の方が相対的に小さい像を見ていることになるのです。 脳は大きさの違 う左右の像をコンポジットして一つの画像として処理しないといけないのですが、重ねる像の大きさが違うと、脳は非常 なストレスを感じることになるわけです。

乱視の場合は、度数に方向性がありますので、向きによって倍率が異なるわけですが、左右で乱視の軸方向が異なる 場合、たとえば、正方形を見たとき、微妙に菱形に見え、その変形方向が左右で異なるわけですから、これを重ねて コンポジットするために、脳はかなりのストレスを強いられるわけです。

さて、結論として、どうするかですが、違和感がほぼ無くなるまで、左右の度を歩み寄らせるのです。通常は弱い 方の度を強めるわけにはいかないので、大抵は、強い方の度を弱めることになります。

因みに、初めてメガネを掛けるAさんには、右=-2.00D、左=-2.50Dを掛けていただくことにしました。  一般的には、頑張れば左右の差が2.0Dくらいまでは慣れると言われていますが、成人した方が初めて掛けるメガ ネとしては、左右差1.50Dでも十分辛いもので、敏感な方の場合は、上記のレベルまで慎重にしないといけないこともあるの です。こういうケースでは、数年をかけて段階的に矯正して行くことになります。
この処置によって、度の強い方の眼はぼけて見えているはずですが、両眼開放した状態では、全く問題がない( 快適)のが普通です。(右=-2.00、左=-3.00くらいにしたい ところですが、欲張ると大抵失敗するものです。^^; )
It’s the last straw that breakes the camel’s back.

蛇足: 幼児(小児)の場合はこの例にあらず。 先日、某病院眼科の処方で、右=+1.0D 左=+6.0D (6歳)というのがありましたが、 この子はメガネを掛けた瞬間から、ニコニコして快適そのもの。 子供の順応性、恐るべし。

人類の至宝(補足)

「人類の至宝」の反響がなくて、ちょっとがっかりしていたところで、少なくとも2名の方から明確な 反応があった。

最初の方は、60歳代後半の、地元で会社を経営している方で、何と、該当文をプリントアウトして、「教えてくれ・・。」と訪ねて 来られた。この方は、体系的に数学を学習されてはいないが、好奇心と研究心の旺盛さにはいつも脱帽し、見習わせていただいている。 さすがに息子さんを東大に入れた(すでに卒業された)だけのことはあると、いつも納得。

ただ、複素数も三角関数も未経験の段階では、オイラーの公式を理解するのは無理なので、定性的な話をさせていただいた。

最初の方への回答の要約:

「 私たちが日常生活で直接接している数は、実数といって、直線上の1点に対応させることが出来ます。ゼロを中心にして、左側がマイナス、 右側がプラスです。実数だけを扱っても、いろんな仕事は出来ますが、上の数直線とゼロ点で直交するもう一つの軸(虚軸) を加えて、二次元平面上の1点で表すように定義した数を導入すると、一挙に世界が広がるのですが、この数のことを”複素数”というのです。
直線をよく理解するためには、自分が直線の世界に閉じこめられていたのではダメで、平面の世界に視点を置く必要があるのです。
また、平面の世界を理解するためには、自分の視点を3次元の世界に置く必要があります。 ですから、あり得ない虚の数をもて 遊ぶのではなく、実の世界をより良く理解するために、視点をより高い次元に置いて眺めることが極めて有効なのです。
オイラーの等式の凄いところは、e やπ や i が不可思議なのではなく、それらが1体となって、マイナス1という単純な数になる ところが驚異であり、美しいと言われる理由なのです。」・・・ますます混乱しました??^^;

2人目の方は、私の友人(東大卒^^;)でした。自分のブログに私のHPの「人類の至宝」のことを書いてくれ、「やはり理解できない、今度 鳥取に帰った時に教えてくれ・・」と 言うので、以下のように返信を入れておいた。(その返事はまだ来ていない。)

「 ***さんに小生が教えるなんて? おこがましくて・・・、 でもおだてに乗りやすい小生。・・・・・
e^iθ は直接手で触れて見ることが出来ません。透明人間が泳いでいるようなもの。 だから水しぶきを見るのです。
まず、θ=0のとき、e^0 = 1、これは良いですよね。
厳密なことは置いておいて、θにゼロ以外の数値を代入すると、e^iθ は複素平面上の1点を占めると予想できますよね。  残念ながら、e^iθ の値は直接求められないので、その点がθの変化につれてどう動くかを考えるわけです。
そこで、その点の速度を求めるために、e^iθ をθで微分すると、ie^iθ となり、これはe^iθに直角ですよね。 つまり、位置ベクトルに対して常に直角方向に動くわけです。
さらにθで微分すると加速度が求まるわけですが、これが何と、-e^iθ で、原点に向かっているではないですか。  これはまさしく円運動です。
それで、e^iθ =cosθ+ isinθ となるのです。θ=π を右辺に代入すると、マイナス1になりますね。  また、試しに右辺を微分すると、
-sinθ+icosθ = i(cosθ+ isinθ )で、元の式と直交していますよね。
さらに微分すると、-cosθ-isinθ=-(cosθ+ isinθ )ですから、元の式と逆向き(原点向き)ですよね。
・・・・くどい説明で失礼いたしました。」

実業高校しか出ていない私が東大出の友人に講義するとは、何ともおこがましい。 それにしても***君は謙虚な人だ。 夏にはまた 一献交わす魚が出来た。^^;

我ながら、私は本当にしつこい人間のようだ。 だから最近は娘にも敬遠されて、よっぽど困った時以外は私に質問しなくなった。^^; ;;
でも、感動したことについては、一人でも多くの人とその喜びを共有したいと思うのだ。^^;  分からない時も孤独、分かってしまっても孤独、 人間の宿命か。
Der Mensch ist ewig einsam. (←30年前、ドイツ語にかぶれていた頃のお気に入りの言葉。 間違っていたらご指摘ください。^^;)

人類の至宝

少し前に、高2の娘が学校の数学で”虚数”の単元に入ったと言ったので、教科書を見てみた。 ところが、複素数平面や極形式、ド・モアブル の定理等の記載が全くないので、Webで調べてみたら、何と、2003年からの新課程で高校数学から消えていたことを知り、
愕然とした。

ベクトルでも、内積を教えるのに外積を教えない。ベクトル、複素数、三角関数、指数関数等は密接にからみ合い、それらをセットで 学習してこそ、その醍醐味が味わえるのに、誠に残念なことである。

e^iπ = -1 は、人類の至宝と言われる、オイラーの等式だ。

これは、e(自然対数の底;2.71828・・・)の iπ乗( i は i^2=-1で定義される虚数、πは円周率)=-1ということだ。

つまり、(2.71828・・・)の(i x 3.141592・・・)乗がマイナス1になるということ。
何で??
e^iθ をマクローリン展開すれば簡単に導くことが出来るのだが、f(θ)=e^iθ のグラフを描いてみれば、視覚的に 一目瞭然となる。

まず、e^iθ には i が含まれているので、複素平面上の1点に対応するはず。そしてf(0)=1 である。 θで微分してみると、f'(θ)=ie^iθ となり、絶対値は元のままで方向が位置ベクトルと直交していることが分かる。つまり、速度は大きさが 一定で位置ベクトルに常に直交しているということだ。

さらにその速度f'(θ)=ie^iθをθで微分してみると、加速度f”(θ)=-e^iθ となり、大きさは元のままで、向きが原点に 向かっている。 すなわち、これは半径1の円を描くことになるのだ。

つまり、e^iθ = cosθ + i sinθ (オイラーの公式)となり、θ に π を代入すれば、マイナス1になるのだ。  このオイラーの公式から、ド・モアブルは元より、三角関数のあらゆる公式も簡単に導出することが出来る。

一例を示そう。
e^i(α+β)=e^iα * e^iβ を オイラーの公式によって計算してみてください。
sin cos の加法定理が一挙に導けて、笑いが止まらないはずです。

EMSは60度の偏角のミラー2個を適当なねじれ角で組み合わせたものですが、そのねじれ角θを解析してみたら、 何と、cosθ=1/3 という単純な数字で表されることが分かった。当人は仰天、感動したのであるが、今日までそれに関する コメントを誰からもいただけないのは、非常に残念なことだ。

1立方センチの立方体

仕事台(今は小型旋盤の台)の下の本棚を整理していたら、小さい段ポールの箱に入った、 多数の木製の立方体が出て来た。 これは、8年ほど前に2年間ほど夜間だけ、某学習塾の非常勤講師をしていた 頃に使用したものだ。用事がなくなってからも、どうしても捨てることが出来ずに残していた物だった。

体積の概念が曖昧だった中学2年生の男の子のために、私は1cm角の木の棒をホームショップで探し、卓上の丸 鋸で、結構危険な思いをしながら1個ずつ切断して仕上げた。

これを1辺が2倍になるように、4個合わせて上から見ると、合体で出来た大きな正方形の面積が元の4倍になる ことが分かる。また、1辺に3個並ぶようにすると、9個で大きな正方形を形成することが分かる。これで、 面積比は相似比の2乗倍になることを男の子に納得させることが出来た。 私はさらにこれを立方体に発展させ、 体積比が相似比の3乗倍になることも教えた。

立方体でなくても、たとえば人間のような形でも、小さな立方体の集まりと考えることが出来る。 体重60kgの人 がたとえば6万個の1立方センチの立方体で近似させることが出来るとすると、同じ個数の1辺2cm(8cm3 )の立 方体で、2倍の相似比の人間を形成することが出来る。だから、完璧に相似のまま身長が2倍になると、体重は8倍に なるのだ。(この仮想の立方体の1辺は限りなく小さく想定できる。)

この男の子のお母さんが塾に月謝を払いに見えた時、お母さんの生活臭が痛々しく伝わり、私は何としてもこの子 の学力を上げてやろうと決意した。しかし、その思いがつのるばかりに、宿題をして来ない子にいつも笑顔で接する ことが出来なかったことから、次第に敬遠されてしまい、この子は結局塾をやめてしまった。今はすでに成人して いる勘定だが、あの頃の事をこの子はどう思っているのだろう。「妙に口うるさいオジサンだったなあ。」 と思っているのかな。

メガネの度数

ホームページに眼やメガネのことを書いているせいか、ときどきご質問をいただく。

先日、覚えのない女性名で分厚い封筒が届き、密かな期待を持って開封したら、メガネで苦労して来られた経緯が詳細 に綴られてあった。

比較的最近、関東地方から、大手のメガネチェーン店で何度メガネを作っても満足できなかった男性が鳥取市の当店までメガネを 作りに見え、 「初めて満足がいくメガネが出来た。」と大変喜んでいただいた。 どうも、全国的に相当な割合で自分の メガネ(の度数)に満足しておられない方がおられるようだ。 しかも、よくお聞きしてみると、私が当然だと考えている 検査や検討を、メガネの度数を選定する段階で十分に受けておられないようだ。 これは、メガネ店だけでなく、 医療機関でも同様の傾向だった。

実は、この傾向は、当方がネットで情報を発信する前から、店頭でも体験していたことだ。  半世紀に渡って鳥取市で眼科医療に貢献されたO先生はすでに故人になられて久しいが、生前にO先生の眼の度 を測らせていただいていたのは私だ。現在、千葉県在住の奥さんは、メガネを作る度に私の所まで帰って来られる。 奥さんも「あらゆるメガネ店、医療機関を歩いたが、満足できなかった。」という意味の事を言われた。

現在は、他覚的な検査手段が発達しているので、器械による検査だけで、比較的正確な度数を把握することは、 素人でも出来る。 そこに巨大資本を持つ他業種の起業家が目を付け、医療器具であるはずのメガネを“雑貨品”として 量販展開をする。もともと他業者だから、医療品を扱うというプライドも自覚もない。 有名芸能人を使って集中豪雨的 に、主に価格に訴求したテレビ宣伝を流し、消費者を洗脳する。 芸能人は金になればどんなコマーシャルにも出るが、 門外の業界の価値を判断する能力を彼らに期待するのも酷なのかも知れない。

さきほど説明したように、概ね正確な眼の度数を測定するのは、そう難しくない。 問題は、正確なメガネと快適な メガネが同値ではないこと(大抵は相反する)にある。 正確?で不適切なメガネが氾濫して行く(しかも加速している ようだ)のは、隠れた社会問題だとさえ思える。メガネは両刃の剣。効果と副作用が拮抗する投薬や食物と同じ。いくら栄養があっても、 未調理のままでは腹を壊すので要注意だ。

もちろん、眼の検査の最初の仕事は正確な度数を把握することだ。前言を覆すようだが、実はこれも厳密にはそう 簡単な事ではない。後で被検者の装用感を打診しながら、さじ加減をする時の最初の基準なのだから、正確でないといけ ない。問題は、その後、快適さと求める矯正視力との妥協点を、被検者と同じ目線でじっくりと決定することが大切で、これ には、検者の熟練と根気を要するのである。

盾と矛とをひさぐ者あり

「某鏡筒でEMS-Lは合焦しますか?」   これは当方に来るFAQ (Frequently Asked Questions) の筆頭である。

私がEMSの初期型を発売してからすでに16年を経過し、上記の状況に進歩がみられない原因を私なりに 解析してみた。

それは単純明快な事だった。つまり、市販鏡筒が変わっていないということだ。何が変わっていないのか。  バックフォーカスやドローチューブ内径が変わっていないのだ。

16年間という長い年月とインターネットの普及のお陰で、EMSの認知度がようやく上がって来たことに喜びと感謝 を感じるものの、変わらない現状に落胆させられるのも事実だ。

最近では、一部光学メーカーや販売店までがEMSを取り扱ってくださっており、当方には順風が吹き始めているかに 見えるが、上記現状に変化の兆しは全く見えない。それはどうしてだろうか。   それは、EMSが特殊な製品として認知されているからではないだろうか。つまり、従来の天頂プリズム等の一連の 周辺パーツの中の一つの特殊な製品としての扱いだということだ。

語源とは少し意味が異なるが、無敵の盾と無敵の矛とを同時に売る 矛盾がそこにはあるのだ。 私に言わせれば、それは固定観念の呪縛がなせるものであって、何らの根拠もないものな のだが。   私の価値観では、裏像の天頂プリズムはその本来意図された使用目的については不燃ゴミでしかない。 ジャンク ボックスの中にキャップもしないで突っ込んでいる。その出番は、実験やEMSとの比較説明の時だけだからだ。

ただ、実際には、合焦の問題は些細なことなのだ。大抵は接眼部の不適切に光路を消費するアダプターを交換する か、鏡筒を少し短縮すれば解決するからだ。 しかし、鏡筒を加工することに抵抗を示す消費者の方が意外に多いことに 驚かされる。 これもなぜだろうかと考える。 EMSの合焦のために市販鏡筒を少し改造することは、人間工学的に不完全 な鏡筒を加工して、使い道具として完全な物に改良する作業であると私は確信するのだが、それに抵抗を感じる方は、 ”新しい品物を壊す”、という感覚を持っておられるのではないだろうか。

光学メーカーは、十年一日のごとく裏像の天頂プリズムの使用を前提にして鏡筒を設計していて、それにブランド の権威を帯びさせているのだ。大半の消費者はその価値観を自然のうちにすり込まれているが、それに気付いていない。  つまり、未だに倒立像や裏像が権威を帯びていて、光学メーカーも消費者も、その呪縛から逃れていない、 ということだろう。

重い物は軽い物よりも速く落ちる、というアリストテレスの提唱をニュートンが否定するまでに2000年の年月を 要したように、一度確立した権威を否定するのは極めて難しい。

しかし、時代は違う。 より多くの方に早く目を見開い ていただきたいものだ。

 

楚人有鬻楯與矛者。
譽之曰、吾楯之堅、莫能陷也。
又譽其矛曰、吾矛之利、於物無不陷也。
或曰、以子之矛、陷子之楯何如。
其人弗能應也。

(他筆)わたしが初めて世の中と出会ったとき

今日は女友達のRKさんが書いた文章をご紹介します。  1年ほど前にメールに添付していただいたこの文章に、私はいたく感動し、ご自身でサイトを立ち上げて公開されることをお 勧めしたのですが、「私は自分自身のために文章を書いています。」とのことでした。
しかし、どうしても皆さんにも読んでいただきたいと思い、この度、ご本人の許可を いただいて匿名で掲載させていただくことにしました。
後でお聞きしたのですが、この文章は、末期癌のお友達に送られた ものだそうです。
友達が末期であることを知って狼狽したRKさんを、そのお友達は静かに慰められたのだそうで、この 文章はそれに対するRKさんの万感の思いを込めた返信であり、その意味でこれはそのお友達の文章でもある と言っておられます。

 

わたしが初めて世の中と出会ったとき; by Ms.RK(2002/02/13)

小学校三年から高校を卒業するまで、私は岡山市下出石(しもいずし)町で暮らしました。子ども時代を過ご した町ですから、わたしには暮らした、というより、育った、というほうが実感に近いかもしれません。 旭川右岸に長細く上出石・中出石・下出石と並ぶ町で、旭川の中洲を利用した後楽園が川をはさんですぐ目の前に 見える川べりの町です。町内は竹屋さん、氷・薪屋さん、八百屋さん、お菓子屋さん、時計屋さん、薬屋さん、肉屋 さん、種物屋さん、お米屋さん、こんにゃく屋さん、お化粧品店、電気屋さん、瀬戸物屋さん、雑貨店、履物屋さん、 ふとん店、文房具屋さん、と通りに面して小さな商店が並び、裏道にはお勤めをしている家が並んでいました。 旭川の土手や河原は子どもたちの格好の遊び場所で、土手の石垣をよじ登ったり、どんこや糸なまずなどの小さな 魚を川ですくったり、彼岸花を摘んだり、水切りと呼ばれた石投げをしたり、本当に毎日時を忘れて遊びまわ りました。水切りというのは、平たい石を川面を掠めるように投げ、水面を3段とびのように次々と跳ねて飛ばす 遊びです。小学生低学年の頃は、上級生の男の子が遠くまで10回以上もジャンプさせて飛ばすのをただただ尊敬と 憧れの眼差しで見ていました。また、たとえどんこのようなちいさな魚でも、息をひそめてそうっと近づき、 さっと手づかみでつかまえるのは、子どもにとっては大抵の技術ではなく、私はひたすら取り逃がしては、次々と バケツに魚をすくいあげる男の子を尊敬の眼差しで見ながら、その子のバケツ持ちをしていました。

私たちのテリトリーは、上は町と後楽園とを結ぶ橋である鶴見橋のたもとから、下は後楽園の裏門と城跡と を結ぶ月見橋あたりまででした。現在、烏城は鉄筋コンクリートで再建されていますが、当時は戦災で焼け残った 月見櫓だけが残っていました。そのかなり広いテリトリーの中間あたりに岡山神社がありました。今は土手下にき れいに舗装された道が走っていますが、当時は土手まで全部神社の敷地になっていて土手に立つ大きな木 (今度岡山に帰ることがあったら何の木なのか、木の種類を調べておこうと思います。)は注連縄がかかった 御神木でした。神社が道路用地を市に提供したため、神社の敷地から離れて、ぽつんと土手の上に取り残されて立 つその木には、この前帰省の折に見たときには注連縄はなく、御神木の役目をはずされてしまったのかどうか、 これも今度尋ねてみたいと思っています。

さて、この岡山神社の敷地全体も私たちのテリトリーの一つでした。レンガを組み合わせて作った仕掛けで雀 を生け捕りにしたり、花崗岩で作られた実物大の馬にまたがって遊んでは神主さんに見つかって怒られたり、 夕方になるとこうもりの群れが飛び回り雰囲気十分のそれはそれはエキサイティングな遊び場だったのです。 ここでも、私は雀を捕まえることはできず、生け捕りに成功するのは決まって神社のすぐ近くにある家のかなり年上 の男の子でした。一度だけ私のしかけたわなに雀が掛かったことがありましたが、獲物は生け捕りではなく、 レンガに首をはさまれて死んでいて、そのことがあってからは、私は雀の生け捕りから足を洗いました。

そしてまた、岡山神社は我が家の躾の場所でもありました。ちょっとしたウソ言ったり、母のお財布から小銭を 掠めたことが見つかったり(これは主に弟がやっていました)、けんか両成敗で怒られては、「神様にちゃんとおこ とわり(お詫び)」をしてきなさい、と言って神社へ行くことを命じられました。親に叱られて家を閉め出されると、 大体この辺をぶらぶらして、馬にまたがってみたり(叱られたときにまたがってみても、なぜがちっとも楽しくあり ませんでした)したものです。もちろん、ちゃんと鈴とお賽銭箱のあるご神前で「ごめんなさい、もう悪いことは しません」とおことわりもしました。何十回となく頭を下げておことわりをした割には、私はあまりよい子には育た なかったようで、もしかしたら、私には高級官僚の素養が備わっていたのかもしれません。この事実に早く気がつい ていれば、もう少し一生懸命勉強してその道をめざしたのですが、残念ながら今となってはもう遅すぎるようです。

春、夏、秋・・・どういう暦にしたがって開かれていたのかは分かりませんが、神社でおまつりがあり、 夜店がたくさん並びました。金魚すくい、ヨーヨー吊り、りんごあめ、お面、風船、射的、今はもうあまり見かけなく なりましたが、柔らかいあめを吹いてガラス細工のように動物などを形作り、きれいに色をつけて売る人があ りました。買ったことはありませんが、白い玉から魔法のように次々と作品を作り出すその慣れた手際のあざや かさにただただ見とれて、いくら眺めていても飽きませんでした。アセチレンガスのにおいでなんとなく気分が 悪くなるのが潮時で、私はしぶしぶその場を離れたものです。いろいろな色のプラスチック(薄い下敷きのような板) を使ったきれいなケースにニッキや薄荷が入ったお菓子なども、その色の鮮やかさがいやが上にもお祭りの楽しさ を盛り上げていたように思います。それから、これは今も同じですが、イカやとうもろこしを焼くこげたお醤油のに おいが漂ってお祭りの雰囲気はいやがうえにも盛り上がっていました。

家の向かいの文房具屋さんのおばさんは、書道の腕前をいかして家の一室を習字教室にして家計の足しにし ていました。その書道教室にしばし入門していた私は、お祭りのころは、行燈にしたてる作品を練習しました。 社務所付近に飾られる行燈は、町内の子どもたちのミニ展覧会で、○の●ちゃん(山田のミドリちゃんという具合) はいつも上手いね、とか、△君の絵は今度はとても面白いね(発音どおりに表記すれば、「△君なー(△くんのは) 、こんだーぼっこうおもしれーのー」)など、近所の大人たちは町内の子どもたちの作品について品評会をしてい ました。当時はこんな言葉はありませんでしたが、こういう大人たちの評価、子供たちへの関心は、立派な 「地域の教育力」といえるのではないでしょうか。

さて、行燈にするお習字の作品をちゃんと練習した御褒美の意味もこめて、私たち兄弟は何がしかのお小 遣いをもらってお祭りに出かけました。そこで、私が遊ぶのは、きまって金魚すくい。それからヨーヨー吊り でした。口を真っ赤にしてりんご飴を食べる気にはなれず、食べ物関係はもっぱら眺めるだけ。射的なども見物人 で楽しみました。それからもうひとつというか、もう一人、いつも気にして探してみるのはひとりのお乞食さんで した。

その人は小児麻痺にかかったということで、手足と言葉が不自由でした。 「私は○才のときに小児麻痺にかかりました。」に始まって、歩くことも話すことも、 もちろん働くこともできないので、みなさんからのお慈悲にすがって生きるほかはありません、 といったようなことが書かれた札を莚の前におき、小銭を受ける真鍮の鉢を置き、そして自分はひたすらじっと 座っていました。時折お金が投げ入れられると、「ウー ウー」と言いながら頭を下げるのは、きっと「ありがとう ございました」と言っているのだろうと容易に想像がつきました。そして、私はお小遣いの残りをときどきこの鉢に 寄付して?いました。

お祭りのたびにその気の毒なお乞食さんはいました。あるときはお賽銭箱のすぐ近くに、あるときは鳥居 のすぐ横に。私はその気の毒な人は岡山神社からそう遠くないところに住んでいるのだろうな、と思いましたが、 いったいどのような暮らしを毎日しているのかについてまでは、想像をめぐらすことができるほど大人ではあり ませんでした。

あるとき、隣の中出石町に住む従姉妹(父は、この従姉妹たちの父親である伯父と共同で農機具の販売を始め、 私が小学校三年になったとき、下出石で独立した会社を始めたのです)から誘われたのだと思いますが、よその町の お祭りに寄りました。(寄るというのは寄せてもらう、つまり参加するという意味です)そして、私のテリトリーを 遠く外れた、学区の反対側のはずれの広瀬町の神社まで、「だんじり」(=山車)を引いていきました。あまり通った ことのない道、しかも夜の道をどんどん遠くへ歩いていくことは、それだけでとてもエキサイティングでした。 見たことのない街角の光景が次々と目の前に広がる様は、自分の世界が広がっていくようで、それは本当に胸がどき どきするような体験でした。

やっとだんじりがお祭りの開かれている神社に到着したときは、再び引き返して家に戻ったのが9時過ぎだった でしょうから、そんなに長時間たったわけではないはずだのに、私には地の果てまでたどり着いたような心地がし ました。

そこには岡山神社と同じような「おまつり」の光景がありました。岡山神社とは、参道のようす、境内の様子 なとが少しずつ違いますから、ちょうど、他所の家に遊びにいったとき、その家の階段、廊下、勝手口などのつくり がいちいちものめずらしいのと同じように、私は並んでいる屋台も含めて境内をものめずらしそうにじっくりと観察 したのです。

すると、どういうことでしょう。こんなに遠く離れた広瀬町のお祭りに、あのお乞食さんがいるのです。 私は跳び上がるほど驚きました。どうして岡山神社の近くに住むはずの、足の不自由なあの人が、ここにいるんだろう ? 第一、あの人はどうして、今日この神社でお祭りが開かれることを知っているのだろう。

私にとって、自分の世界が倍ほどにも広がったかに思えたエキサイティングなお祭りの経験は、そのお乞食 さんと出合うことによってさらに5倍ほど広がりました。そして、私の頭には、どうしてあの人があそこにいたのか、 という謎が住みつくようになりました。

次の岡山神社のお祭りの日、私は家を出るのをすこし遅らせました。出かけるのが遅ければ、帰りがちょっ と遅くなっても叱られないで大目に見てもらえるのではないか、という子どもなりの計算があったからです。頭に 住みついている不思議マークと一緒に、岡山神社に着いてみると、やはりその日もあのお乞食さんはいました。 茣蓙に座り、お鉢を置き、説明書きを前に広げていつもと同じように物乞いをしていました。

いつものように、ヨーヨー吊りをしたり、あめ作りを眺めたりしているうちに、だんだん人出が減ってくると、 まだ人がいるのに、ポツリポツリと屋台が店じまいを始めました。そうなると人は潮が引くようにいなくなり、 お祭りのにぎやかな様相は一変してみるみる跳ねた舞台のようになってきました。

私は何か用があるようなふりをしてその辺をうろうろしながら、お乞食さんの様子を窺っていました。 すると、ヨーヨーの店を片付け終わったおばさんが、そのお乞食さんのところへやってきて、鉢にたまったお金 を勘定し始めたのです。そして、なにやら手帳のようなものに書き込んで、説明がきや真鍮の鉢を片付け、 お乞食さんの世話を始めました。

そうです、そのお乞食さんの世話をして、彼をつれてきていたのはヨーヨー吊りのおばさんだったのです。 年の関係からみて、親子ではない(当時の私の子どもの目にそう映っただけかもしれないのですが)ないようでした。 お姉さんと弟のように思われました。

あのおばさんは、弟の世話があるから結婚していないんだろうなととても気の毒に思えました。 まだまだ戦後の貧しさの残っている時代です。行政は道を作ったり、学校を建てたりで精一杯で、きっとまだまだ 障害のある人の福祉にまでは今のような予算が出せていなかったのではないかと思います。おばさんは仕事のあいだ、 弟を自分の目の届くところに置くために自分の近くに座らせ、同じことならば、と彼に物乞いをさせていた のでしょう。

とにかく、そのお乞食さんの秘密がわかったとき、私は生きていくことがどういうことなのか少し分かった 気がしました。世の中の秘密を見たような気がしました。そして、ちょっぴりだけ大人になれたような気がしました。 漢字を覚えても、計算ができるようになっても感じることのなかった、「私は昨日までの私とは違う」という思いが 湧いてきました。そう、私はあのとき確かに「世の中」と出合ったのです。

何かつらいことがあると、お金を数えていたおばさんの姿を思い出します。弟を連れて縁日めぐりをして食べ ているおばさん。これは、あとでまた知ったのですが、手帳に書き付けてあったのは、何日にはどこで縁日がある のかという予定でした。わたしが、いつもヨーヨー吊りをするのを知って覚えてくれていたのでしょうか?  いつだったか、私が吊っていると、そっと水からゴムの輪を水槽のふちに引き上げて、紙のこよりを濡らさなくて も吊れるようにしてくれました。驚いておばさんの顔を見上げると、「それはオマケで吊っていいよ」というふうに 黙って目で合図してくれました。

「私は○才のとき小児麻痺にかかり・・・云々」の文言は、おばさんが自分で書いたのでしょうか?それとも善意 を頼んで、あるいはいくらかのお金を払って、他の人に書いてもらったのでしょうか?  それはかなづかいや助詞の使い方などにところどころ間違いのある文章でしたが、整った字で書かれていました。

お祭りのあれやこれやの詳細、紙芝居の絵のように次々と展開する一こま一こまの場面とともにあのおばさんと お乞食さんを思い出すとき、もう二度と手が届かない昔に過ぎ去った子ども時代へのたまらない懐かしさと、 「一生懸命生きなくてはおばさんに申し訳ない」という思いが心のそこから湧いてくるのです。

懸賞ゲット

広告の掲載に応じていた、地元の進学高校の学校祭のプログラムを月初めに受け取った。

”メガネのマツモト”が掲載してあるのを確認した後、各社の広告を辿ってみたところ、一番最後に某学習塾の 広告があり、懸賞問題が掲載されていた。
2変数関数の最大値を問う問題で、「高校の範囲を超えているのでは?」 と思いながら挑戦したみたところ、確かに、高校のレベルで解ける。 年齢制限もなさそうなので、応募してみたところ、 3人の正解者の一人に認定された。

懸賞はわずか千円分の図書券だったが、原始時代レベルから独学で積み上げて来た 私にとっては金額以上の意義があり、今日受け渡し場所で懸賞をいただいて来た。