65mm barrel / 65Φバレル

the left = standard 2inch barrel; the right = 65mm barrel
the sizes of the cases are the same.
左が2インチバレル(barrel)右が65φバレルです。
14mmの差とは思えません。
(ケースは、左右共同じです。(下の写真も同様))
65mm-barrel enables to accommodate the larger mirror.
バレルを太くする意義を図示しました。同じ収納ケースを用いながら、より大きな(長い)ミラーを収納でき、オフセットの自由度も 増します。(F値が小さいほどオフセットが必要)
単体用にも使用目的によっては意義がありますが、当面はF値が小さく、口径が大きなBINO用に採用する予定です。

一口メモ: 私の記憶では、国内ではオスの挿入部のことをスリープと言っていたような気がしますが、 アメリカ人の友人によると、二重のはめ合いのチューブがあれば、中の雄の方がバレル(barrel) で、外の雌の方がスリーブ(sleeve)なのだそうです。これは、カッターシャツの袖(sleeve)から腕(手首)が 出ているイメージから来ているのだそうです。

65mmφ運動に参加してください。

私がEMS-1の製品化を検討していた頃は、まだバレル(barrel)径が24.5mmφのアイピースが主流で、国産の通常の最大のアイピースが 36.4mmφ,P=1のネジ込みでした。 そして、31.7mmφのアメリカンサイズが普及し始めた頃でもありました。

それが数年以上前からは、2インチアイピースの使用が当然のことになっています。これは、マニアのRich-Field(広視界)指向の強さを良く表している 結果だと思います。

しかし、望遠鏡の接眼部の2インチスリーブへの対応は、総じて後手にに回り、現在ですら標準で対応していないメーカーもあり、 optionの2インチ用パーツについても、光路長ロスへの配慮(Low Profile)がほとんど見られなかったりします。

さて、全ての鏡筒が完璧に2インチ対応になれば十分かと言えば、そうではありません。2インチアイピースを単体で鏡筒にダイレクトに 接続する場合は良いのですが、大型のダイアゴナルプリズム等(天頂プリズム、ミラー)を介して2インチ アイピースを使用することを考えると、望遠鏡の接眼部の最大接続径は2インチより太いのが好ましいのです。

F5等の極端に短焦点で口径も大きい鏡筒に双眼仕様のEMSを接続する場合等は、さらにその要求が顕著に なります。
アイピース視野環から200mm程も中に 入った所で2インチ接続することもあり得る訳で、マツモトが光束の確保に腐心している次第です。

しかし、上記のように、現在までの望遠鏡業界の2インチ規格への保守的な対応から判断しまして、ただ傍観しているだけでは、より大径の接続 規格の一般化が早期に期待できないことは明らかです。

そこで、この度、65mmφバレルの創始を宣言させていただくことにしました。 雄の挿入規格を先に作ってしまおう、ということです。2月中旬には仕上がる予定です。この65mmφ挿入部が新規格の先駆けとなり、 市販の屈折鏡筒の接眼部の大型化とバックフォーカスの延長を促せたら幸せです。
具体的には、数百個単位の初期投資で計画を進めておりますので、なにとぞご理解、ご支援を賜りますよう、お願いいたします。

従来のEMSに65mmφバレルを採用しますと、より大きな第一ミラーを収納することが可能になります。また従来通りのミラーを収納する場合でも、内部スペースが 拡大することで、ミラーエッジの切削工程が大幅に削減でき、生産性の向上も期待でき、接続の強度と精度が増します。

単体望遠鏡用のEMS等については、光路長も短いので、当分の間は現行の2インチ径接続を踏襲しますが、 今後は必要に応じて、65mmφ挿入部を使用していくことになります。   まずは他項で少し触れています、SCHWARZ-BINOの第4世代の仕様に組み入れることになります。

接続径は、大きいほど良いのですが、望遠鏡の現状を現実的に見た上でのぎりぎりの妥協点としての結論が65mmφでした。 この径でも現状ではドローチューブ内径を越える場合が多いのですが、今後の鏡筒の進化に期待したいところです。   (2003年1月24日)

 

Adjustment of the connecting angle / EMSの接続アングルの調整

The photo is the customized EMS-L for the binocular use.

Put the EMS on the right-angle gauge. (A desktop and a wall can be a substitute.) You see the eye-side surface doesn’t touch the wall closely.(red arrow)

Then,unscrew the three set-screws (blue arrow in the photo) and fix the connecting angle untill the both sides of the EMS will touch the floor and the wall.
(The place of the three set-screws are different from the types of the EMS. Please consult me when you cannot identify the screws.)

直角面定規(机面と壁面等が代用できます)にEMSを載せます。
この写真では、接眼側の端面が垂直面に密着していません。
第2ミラー(接眼側)の3ヶ所のセットビス(青い矢印)を緩め、
両端面がそれぞれ水平面と垂直面に密着するようにします。

This photo is the finished stage of the upper adjustment.

Note the both sides of the EMS closely touch the gauge surfaces. At this stage, the image-inclination adjustment is almost perfect.

Even if some image-inclination should exist at this stage, You can adjust the image angle up to perfect by subtlely adjusting the viewing angle, for example, to shift the right angle toward 89dig. or 91dig.

This is one of the excellent features of the EMS.

Though the above adjusment is done by me, and the users will not have to do that by themselves, I explained that because I would like you to learn one of the remarkable features of the EMS.

上の調整後、両端面が定規に密着した状態です。
この時、両端面が直交し、同時に2つのミラーケース底面、即ち2枚のミラー面も直交しています。
この調整によって、左右の像の相対的な倒れの調整がほぼ完璧になります。
万一、この調整後に像の倒れが多少残る場合は、仰角の微調整で完璧まで追い込むことが出来ます。
これは、EMSの特筆すべき特徴の一つです。

この調整は、ユーザーの方にはほとんど不要ですが、
EMSの原理を理解していただく意味でご説明しました。

仰角の調整と左右の像の回転の関係

This is the diagram drawn to explain how the images rotate in accordance with the change of the viewing angle referred above.
“A” positon is that of the right angled, “C “position of the straight viewing.

上記調整で調整原点に復帰することが出来ます。
万一、調整原点に復帰しても、左右の像の相対的な倒れが完全に解消
しない場合は、左の図から仰角の調整と左右の像の回転の関係を学習
していただいた上で仰角を微調整してください。
画像は90度対空から直視までの変化を示していますが、90度を越え
る方向に仰角を増やして行けば、像が逆方向に回転することは、容易に
予想できるでしょう。
左右の像の相対的な倒れが、左右の像の天が開いたV字傾向なのか、
その逆の八字傾向なのかを見極めてから、その逆方向に補正するのです。
左右の像の片方だけが余計に倒れているように見えても、あくまで左右のアイピースの平行が保たれるようにして、視野の相対的なずれを補正することに徹してください。

EMS used on Newtonians / EMSのニュートン反射への応用

仰角切り換え型 ニュートン反射式双眼望遠鏡

EMSは、そのフレキシブルな像回転と仰角調整の機能により、シーフを含むあらゆる光学系の正立系となり得ますが、 今回は、ニュートン式の反射望遠鏡への応用例の一つを発表させていただきます。

側面図のように、EMSをバズーカ砲のように折り返して使うと、目標に対して対面視で正立像が得られます。(上図は、双眼にした時、対面視での右眼鏡筒、 あるいは逆視での左眼鏡筒を示しています。鏡対称で図を複製して補えば双眼鏡筒になります。)
これは4回(偶数回)反射の正対面視なので、主鏡の光軸の回りに全系あるいは筒先系を回転させても像が回転しません。 つまり、この使用法では、鏡筒接眼部(EMSなしの時の光束の出口;以下説明略)の位置角が自由なので、 まず、EMSの第1ユニットを反射する主光線Bが垂直面内に属すように鏡筒の接眼部の位置角を設定します。 この時、水平位置に対しての鏡筒接眼部の下向き勾配が√2:1となります。

次に、この状態からEMSの第2ユニット(アイピースと一緒に)を主光線Bを軸として 180度回転させると、第2ユニットからの主光線Cは、主光線Aにシフトします。
正面図でこの状態を示しました。
A位置は、逆視用の位置とも言えますが、 120度対空の位置でもあり、像はCの状態から第2ユニットの射出面を基準にして180度回転しますが、観察者も180度向きを変えて観察します ので、これも正立像であることが分かります。
逆視系で背後を観察する事は、対空型の望遠鏡で天頂オーバーを観察することであり、正立像の望遠鏡を天頂 オーバーに向ければ、私たちが反り返って天頂より後ろを見ているのと同じで、像が一見逆さまに見えるのが正常なのです。

一方、EMSをそのままの形で180度逆視(目標に背を向ける)用に取り付けると、4回(偶数回)反射の逆視なので、 全系あるいは筒先系の主鏡の光軸の回りの回転によって像は回転角の2倍の角度で回転します。 これで双眼視が可能になるのは、 左右の鏡筒の接眼部が同軸で対面するように鏡筒を固定した時のみで、望遠鏡の規模が大きく なるほど、天頂付近の観察姿勢に無理が生じます。
さらに、その時の像は一見正立像に見えますが、 前記の対面視での正立像のような正常な立体視は得られず、立体感が遠近逆になってしまいます。これは、逆視をすることで左右の眼と左右の鏡筒が 入れ替わっているからで、また、視点を変えて敢えて天頂を越えて対面視で観察しますと、逆視で正立像だと信じていた像が、実際には 倒立像であったことが理解できます。この状態で、望遠鏡をパンすると、像が逆向きに逃げるので、その事からも、逆視では見かけ上の正立像が実は倒立像 であることが分かります。

つまり、上図のようなC,Aの仰角切り換えタイプでは、どちらのポジションでどの方向に望遠鏡をパンしても 像の動きが矛盾しない正立像と正常な立体視が得られることになります。対象の高度角の45度付近を境として、対面視と 逆視(または120度対空視)を選ぶことで、常に快適な観察姿勢を得ることが出来ます。

(屈折式と逆に、仰角が増すにつれて接眼部の位置が高く なるので、Cのポジションでも高度角60度くらいまでは楽に観察できることが予想されます。)

補足事項:

2枚の小さい方形のミラーを用意し、ブック型に保持し、その角度を直角から少しずつ鋭角にして自分の眼の 2回、3回、4回反射の逆視像を作り、ミラーの全系を視線の回りに回転させた時の像の回転の様子を観察してみることをお勧めします。
奇数回反射では裏像になっていることの他、逆視の奇数回反射では像が回転しないこと、偶数回はその逆であることが ご理解いただけるはずです。正対面視の場合は、全くその逆で、市販の手持ちの双眼鏡の折り畳み式の眼幅調整の根拠になっています。


あとがき

EMSの応用性の広さについては、未だに十分にご理解いただいていない 印象が強く、この度、試作品の製作を待たずにその一例を発表させていただくことにいたしました。
上記は、ほとんど無限の可能性を秘めたEMSの応用のほんの一例に過ぎず、その変形タイプまで含めるとEMSにはまだまだ優れた応用が山ほどあり、試作をする時間が無いことが歯痒くてなりません。
(図は慌てて描いたもので、無駄な補助線の消し忘れがあり、お見苦しい点があることをお詫びします。)
(2002年9月30日)

BINO-QUIZ

( 1 )

left image                         right image

If you were to correct the trouble in the photo only by turning the component telescopes, which do you think is the right prescription?

A: Turn the left telescope a bit to the upper left, or the right telescope to the lower right.

B: Turn the left telescope a bit to the lower right, or the right telescope to the upper left.

( 2 )

Which do you think is right?

A: The inter ocular distance is incorrect.

B: Collimation is not correct.

C: Both A and B can be an answer, we cannot tell which is right in the photo.

( 3 )

Which do you think is right?

A: It’s not a trouble of collimation, but only the inter ocular distance is far too wide.

B: Collimation is incorrect. Turning the two telescopes to the converging way is one of the remedy.

C: Collimation is incorrect. Turning the two telescopes to the diverging way is one of the remedy.

( 4 )

Looking at the Jupiter, the further the satellite the wider the separation occurred while the Jupiter itself was merged. Which do you think is the most appropriate prescription? Winking the eyes, the lower of the left end satellite was proved to be the image of the left telescope.

A: The angles of the mirrors of the EMS seems to be in disorder so complicatedly that it would be better to leave it to Mr. Matsumoto.

B: To change the viewing angle of the EMS slightly to the 91degrees’ direction, keeping the eyepiece barrels parallely, will be a perfect remedy.

C: To change the viewing angle of the EMS slightly to the 89degrees’ direction, keeping the eyepiece barrels parallely, will be a perfect remedy.

The answer: 1=B, 2=B, 3=B, 4=B

BINO-QUIZ(双眼クイズ)

第1問

左鏡筒の像       右鏡筒の像

単体調整済みのEMSをセットした左右鏡筒を双眼に組み立て、左右のアイピースを別々に覗いたら、上図のように見えた。

これは、右鏡筒を基準に考えると、左鏡筒が( A )を向いているので、
左鏡筒を( B )向きに修正するか、右鏡筒を( C )向きに修正する必要がある。

A,B,Cに当てはまるものを以下より選択せよ。(同じ語を何度使用しても良い)

(右上、左上、右下、左下)

(初期調整時の鏡筒の平行出しの問題)

第2問

友達が自作した双眼望遠鏡を覗いたら、上図のように目標が左右にだぶって見えた。

上記の診断として最も正しいものを答えよ。

A:目幅が合っていないことが考えられる。
B:光軸が合っていないと考えられる。
C:上記A,Bのどちらも理由になり得るので、区別できない。

第3問

上記双眼望遠鏡を調整し、やっと像を合致させることが出来たが、
視野円が上図のように大きくダルマ状にずれてしまった。

上記の診断として最も正しいものを答えよ。

A:像が合致しているので、光軸は合っているが、目幅が大きく狂っている。

B:左右の光軸が、視線が寄り眼になる方向に狂っていて、これを鏡筒を振って直す場合は、左右の筒先(対物側)を開く方向に調整する必要がある。

C:左右の光軸が、視線が寄り眼になる方向に狂っていて、これを鏡筒を振って直す場合は、左右の筒先を閉じる方向に調整する必要がある。

D:左右の光軸が、視線が拡散する方向に狂っていて、これを鏡筒を振って直す場合は、左右の筒先を開く方向に調整する必要がある。

E:左右の光軸が、視線が拡散する方向に狂っていて、これを鏡筒を振って直す場合は、左右の筒先を閉じる方向に調整する必要がある。

1~3問の解答

第1問:A=左上 B=右下 C=左上
第2問:B
第3問:C

解説

ユーザーアジャストの双眼望遠鏡を使う上での最低限の常識を問題にしてみました。光学理論以前の常識ですが、アジャスタブルな双眼望遠鏡を作り始めて10年以上を経過し、基礎的な部分での誤解が誤った調整に繋がるケースが目立つことを痛感しましたので、このような問題を作成してみました。

第2問についてですが、これも90%以上の双眼初心者の方が誤解している問題です。
改めてペーパーテストにすれば、正解を出せても、現場では、特に左右の像が左右に拡散してだぶっていれば、大抵本能的に目幅を狭めてしまうものです。
”目幅が狂っていても光軸が合っていれば像はだぶらない。”という鉄則をまず覚えてください。 もう一度、「目幅と光軸は無関係!」です。

第3問については、左右の鏡筒の平行度が完璧であっても、観察者が輻輳した状態でEMSのX-Y調整をやってしまうと、同じ症状が表れるので、注意が必要です。
このような場合は、直ぐに器械を疑うのではなく、まずは自分自身の輻輳を疑ってください。
この状態で鏡筒をいじってしまって迷宮に入り込むケースがほとんどです。
ただし、無限遠で調整済みの双眼望遠鏡を至近距離に向けた時は、第3問の図の状態になるのが正常です。(adjustableな双眼は常に完璧な状態に   調整出来ますが・・・)(それと、最近は少なくなりましたが、視野環がずれた粗悪なアイピースでは、永久に視野円が重なりません。(偶然左右のアイピースが等量だけずれていれば別ですが))

調整の袋小路(迷路)に入ってしまうのは、必ずしも知識が足りないことその物ではなく、むしろ理解しているという思い込みが原因です。

第4問

木星を覗いたら、上図のように、本体はちゃんと合像するのに、 外の衛星ほど余計に上下に分離してしまった。
ウィンクをして見ると、最も左の衛星について、左鏡筒の像が下側にあることが判明した。

これについて、最も正しい診断を選択せよ。

A:これは、EMSの内蔵ミラーの角度が複雑に狂っているもので、ユーザーの手には負えないなので、MATSUMOTOに再調整を依頼すべきである。

B:左の像が右の像に対して反時計回りに回転しているので、左のEMS全体を左鏡筒の光軸の回りに少し反時計回りに回転させれば補正できる。アイピースの平行度が少し狂うが、実害は無い。

C:これは、”15cm双眼・・の使い方”で説明している、左右の像の天地方向が相対的にV字(逆八の字)傾向になっている例で、左右のEMSの対空角度を90度から91度の方向(対空角度が大きくなる方向)に微調整することで補正できる。
この時、左右のアイピーススリーブの平行度はキープすることが出来る。

D:基本的にはCの通りだが、左右の像の倒れのV字傾向が、左右対称的でなく、片方のみが余計に倒れているような場合は、像の倒れは修正できても、左右のアイピーススリーブの平行度はキープすることが出来ない。


第4問の解答
正解=C

解説

本問は、やや上級の問題です。 Bの方法でも像の回転を補正できますが、正しいのはCです。
調整量がわずかなので、最初はどちらに調整したら良いか迷うことと思いますが、こういう場合は、  常に極端なモデルを想定すると指針が分かります。”15cm双眼望遠鏡の使い方”の 中の”EMSの接続アングルの調整”の図を見ながらやれば簡単に出来るはずです。
左右の像の傾きが対称的でなくても、相対誤差を補正することのみに集中すれば良いのです。

この例に限らず、調整装置が連続的に双方向に機能し、誤差を逆傾向に持って来ることが出来れば、 必ずその中間に存在する正解に持って来ることが出来るということです。

ここでご注意いただきたいのは、未熟な観察者が極端に輻輳(寄り眼)した状態で右のEMSの X-Y調整を極端に操作して合像させますと、この状態が起きます。他項でも説明していますように、 このX-Y調整機構は微分的に成り立つもので、厳密には視野を回転させながら弧状に像を動かすので、 誤った使用は禁物です。

トラブルが発生した場合には、その診断に確信が持て、調整の指針が分かっていることを 前提にして調整してください。 指針が分からずにやみくもに各所をいじくり回すのは、 道に迷った人が、地図上の自分の位置が分からないのに動き回るのと同じです。
この調整で迷宮に入り込み、外国からEMS接眼部一式を再調整のために送り返して 来た方もありました。
(現行仕様のEMSには、XYノブにリミッターを装備していますので、上記のような迷宮に入り込む心配は解消しています。)

Durability tests on the Silver Coating / ミラー反射膜耐久性試験

The coating maker guarantees durabilities of the new silver coating as passing the tests of high-humidity and high-temprature, over 90 degrees centigrade with 90 percent humidity, soaking in the solt water, and etc. This time, I will also show you the results of the durability tests; one of my friend, a researcher of progressive telescopes, voluntarily has done on the silver mirror with other comparative samples.

 この特殊銀コートは、蒸着メーカーがその耐久性を、高温高湿テスト (温度90℃湿度95%中、1,000時間)や塩水浸漬テスト等で保証している画期的な物ですが、 私の友人がこれとは別個に数々の実験をしてくれましたので、ご紹介したいと思います。

Test 1: Durability against car exhaust( durability against sulfur dioxide);

Watched the possible damage of a silver coated mirror sample attached at the vent of a car by adhesive tapes after driving 60 miles (100km).

result: After washing the soot the silver mirror restored its flawlessly beautiful surface.

To accelerate the reactions, I changed the test substance from gas to liquid after that.

テスト1:自動車の排気ガスへの耐久性(亜硫酸ガス耐性);

自動車の排気口に銀ミラー片を強力両面テープで張り付け100km程度走行後の劣化(の可能性)を観察。  (銀増反射膜のみ)

→結果 煤が付着するが、清掃後は全く劣化なし

→加速実験のため、これ以降は気体中でなく、液体中で実験した。

Test2: Tape pealing off test;

Adhesive power from weak to strong, I tested the mirror samples by musking tape, heavy-duty paper tape, then strong double-stick tape.
result: No pealing off was occured on each mirror, silver, aluminum-A, aluminum-B.

テスト2: テープ剥離試験;

銀の密着性確保が困難と聞いていたため、膜と基板ガラスとの密着性を試験。
粘着力の弱い順に、マスキングテープ、紙ガムテープ、強力両面テープを使用。
ミラー面にテープを張り付け、ゆっくり引き剥がし、膜剥がれがないかを試験。
(各テープで3回ずつ試行)

(銀増反射膜と アルミ増反射膜AとB)

→結果  銀・アルミA/Bとも剥離なし。

adhesive tapes used on the pealing tests

Test3:Durability against strong acid;

As the silver inherently has a tendency of going black under the sulfur dioxide, I tested the mirrors soaking in the spa water of hydrosulfuric acid.
Minami-Aso Jigoku-Onsen
(Jigoku-Spa in southern Aso; Spa of hydrosulfuric acid;PH=1.74 )
comp: the PH of our gastric acid is 1.5 to 2.
result: Every three of the sample mirrors survived flawless in 5 hours soaking.
Following table shows the resuls of more severe test of longer hours.

テスト3: 強酸耐性試験;

銀が硫化水素で黒ずむ性質があるため、硫化水素温泉水に浸漬して試験。

南阿蘇地獄温泉 硫化水素温泉 (PH1.74)
参考:胃液のPHは1.5~2
(銀増反射膜と アルミ増反射膜AとB)

test4:Durability against strong alkalies;

As aluminum is said to be erodent on the sodium hydrate, I have also tested the mirrors soaking in counterpart PH of 12.26, sodium hydrate solution.

result: After 14 hours of soaking, aluminum A had small holes, aluminum B caused almost total exfoliations.

テスト4:強アルカリ耐性試験;

アルミが水酸化ナトリウムに侵される性質があるため、  強酸とは逆の強アルカリPH12.26の水酸化ナトリウム溶液にミラーを入れ劣化を観察。
(銀増反射膜と アルミ増反射膜AとB)

Acknowledgement and Conclusion

I musn’t forget to extend my sincerest appreciaton to my friend who have kindly submitted these painstaking report to me. This will surely correct the stubbern stereotype against silvercoating and lead the astronomical world to the proper derection.

In conclusion, I can say with confidence that this enhanced silver coating more than meets the standard of durabilities of mirrors in the practical use of a telescope.

謝辞と結論

これらの大変骨の折れるテストを実行し、まとめてくださった私の友人(進歩的な 望遠鏡の研究者)に心より御礼申し上げます。

このリポートが従来技術の銀コートに対する根強い偏見を払拭し、天文界を正しい方向に 導いてくれることを確信しています。

このテスト結果により、この特殊銀コートが、天体望遠鏡用の光学素子としての耐久性の 基準を十分に満たしていることが確認できました。