
上の連立方程式を、行列で表記すると、下の式になります。
このくらいの連立方程式ですと、そのまま暗算でも出来ますが、行列を使用するメリットは、計り知れないものがあります。
2行2列までの行列の演算はすぐに覚えられますので、どうか毛嫌いしないで、昔の教科書を引っ張りだすなり、ネットで検索するなりして、復習してください。
Innovation of Astronomical Telescope
正立ミラーシステム(EMS)を開発した松本龍郎のサイト。 たった2回の反射で天体望遠鏡の像を正立像にします。
Tatsuro Matsumoto; Inventor of the EMS, Erecting Mirror System. EMS offers non reversed upright image with no additional undesirable abberations.
近軸光線の屈折について、基礎からご説明します。
近軸とは、光軸に極限まで近付いた光線のことで、理想的な結像をすることは経験的にも分かっていますが、そのままでは作図も考察も出来ないため、常に高さ(h)のある光線を想定することになります。
言い換えますと、近軸光線追跡は、完全無収差の光学系による理想結像をシミュレートするものです。
上図のように、平行光線 A, B, C が全て F に結像するのが、理想結像です。
今回も、レンズは厚みが無視できる、度数Φ=+1.0(焦点距離=1.0m)の凸レンズとします。
Φ=1.0Dとしたのは、光線傾角 tangent の分母が常に1になり、傾角要素のαが、α=tanα=h となって、長さの要素として可視化できるためです。(αは、下向きが+で、上向きがーです。)
入射光線の傾角 α について、パワーΦの屈折面を高さ h で通過後に α’ となるとすると、
α’=α+hΦ (Φはレンズの度数、1/f ) となることについて、図に則してご説明します。
P2で光軸に平行に入射する光線 C は、傾角α=0,h=h2, Φ=1, を、それぞれ上式に代入すると、
α’=0+h2 = h2 となり、焦点 F でX軸と交わります。
光線 B も同様に計算できます。(α’=h1)
光線は、屈折点Pで、レンズの度数と、光軸からの屈折点の高さに比例した角度で折れ曲がるということです。(α=tanα で定義された屈折角度) 上例は、入射角 α=0ですが、α の値とは無関係に、屈折面に突入する高さhでの光線の折曲がり角度(α=tanα で定義された屈折角度)は一定なのです。
先ほどは、入射角 α=0 の特殊なモデルでご紹介しましたが、上図のようなケースも、全く同様にご説明できます。
入射光線 B についてご説明しますと、P1で屈折しない場合は、P1’に到達しますが、屈折により、P1’→Fに移動するわけです。
お気付きと思いますが、αもα’も、通常の角度ではなく、tanα で定義されているところが重要です。
この図でも、α’=α+hΦ となっていることがお分かりになると思います。
理想の薄レンズに入射する光線は、「レンズ上の入射点の高さ h とレンズの度数 Φ に比例した角度で曲がり、それは入射光線の傾角に依存しない。」—ということです。(ただし、角度は下向き “tangent”で定義された値。)
* h の初期値には、全く制限がなく、どんな数字を入れてもかまいません。(計算に好都合な初期値で良い);
繰り返しになりますが、
α’=α+hΦ
h’= h
これを行列表記すると、こうなります。↓
また、2つの屈折面に挟まれた空間は屈折せずに直進するため、αは変化せず、h のみが変化します。
通過間隔(光の進行方向=+)= t とすると、
α’=α
h’= h – αt
これを行列で表記すると、こうなります。
どんなに複雑に見える光学系も、屈折マトリックスと移行マトリックスを次々に掛け合わせることで、その全系のシステムマトリックスが得られるわけです。結果として得られたシステムマトリックスの行列式の値も1です。
*一見、通常の平面上の幾何学的ベクトルと混同し勝ちですが、そうではありません。
α、α’はx座標ではなく、その光線の基点に於ける傾角(特別に定義された)です。
また、準備運動しましょう。
光線をその位置に於ける傾角と高さで表すと、非常に便利ですよ、というのが前回の講座でした。
では、実例に則して、概略をご説明しましょう。
レンズは、厚さが無視できる、焦点距離1m(度数=1.0D)の凸レンズとします。
まず、X軸とY軸の尺度が違うことに気付かれたと思います。この辺も初心者にはハードルになりますが、近軸光線追跡に用いるXY座標は、X,Yの尺度を統一する必要がないのです。理由を話すと長くなるので、今回は詳細は割愛しますが、一般的な結像公式(1/S’-1/S=Φ)の両辺にhを掛けたことと同じですので、問題ないわけで、これが、この方法の強みなのです。
次に、P点での光線ベクトルが2つあるのにも違和感を覚えられたかも知れません。
屈折面では、瞬時に光線の方向が変わるため、同じ点に屈折前(A→)と屈折後(B→)の、2種類の光線ベクトルが存在するわけです。前回、位置ベクトルではない、と申し上げた所以です。
光線の進行を最初から辿ってみます。
1. 入射光線は、Y軸に一致した屈折面に、光軸に平行に、高さ 1 で突入します。
横に、α(傾角)とh(高さ)を成分とする 行列 A→を併記しました。
2. 光線は、同じ位置のまま、屈折して、光線ベクトル B→ に変化します。
これも、行列B→を併記しています。
3. この光線追跡方法の有用なところは、基準面をどこにでも設定できることです。
練習のために、レンズと焦点の中間点(X=0.5)に新たな基準面を立ててみました。
光線がPに到達した時、傾角は元のままですが、高さ(h)だけが半分になります。
これも 行列 C→ を併記しています。
今回は、(逃げられないように^^;)敢えて計算式を省きましたが、P 点では、レンズの 屈折マトリックス、P’では、X=0→0.5 の間の 移行マトリックス を掛けてやることで、新たな α と h が決定できるということです。
屈折マトリックス、移行マトリックス について、改めてご興味を抱いていただけましたら、講座の最初から見直していただけると幸いです。
光線の傾角の定義や、物点/像点 の位置の正負の約束を講座の最初にしっかりとご説明すべきでした。
後先になりましたが、改めてご説明します。まず、図から、角度の正負の方向の定義をご確認ください。
上図は、必ずしも物点Sと像点Sをお示ししたのではなく(そう解釈されても問題ありませんが)、光線が(進行方向に対して)上向き傾斜のベクトルAと、下向きのベクトルBに分けてご説明するものです。
S,S’が物点と像点だとすると、1/s’ – 1/s = 1/f から、3つのパラメーターの一つが分からなくても、その値が求められることはご承知の通りです。
今回の一連の講座は、一般的な結像公式を使わずに、光軸に垂直な基準面(線)上の(光軸からの)高さhの点を通る光線を、傾斜角αとhとの2元のベクトルで表し、屈折面と面間隔の通過による変化を追跡する方法をご紹介したものでした。
ただ、二次元平面上のベクトルと言うと、どうしてもXY座標中の位置ベクトルを想起されると思いますが、それとは異なります。この辺が混乱を招くのでは?と心配しております。
図中の2元ベクトル、A,Bの成分の下の方は、点PのY座標なので、問題ないと思いますが、上の成分はX座標ではないことにご注意ください。
上の成分は、図中で定義した傾角=α であり、それ自体に方向の情報を持っていますが、tanαというスカラーとしてご理解いただければ良いと思います。
なぜ、光線の傾角の正方向を、数学の慣例の半時計回りとしなかったか?ですが、x座標の正領域と、実像点の位置の正領域が合致するためには、図の方向を正とすることが必須でした。図のように定義すると、像点の位置の正負とxy座標とが矛盾なく合致します。
Now, I am asking 5-optical common sense quiz.
Each of the answering time-limit is 20-second.
光学常識問題を5つご用意しました。制限時間は、いずれも20秒です。
Q2; Which is the area that will not allow the real image of the real object?
実物点の実像が出来ない範囲は 1~3 のどれ?
1. A, 2.B & C, 3. nothing (該当なし)
Q1以外は求値問題を避けた、概念的理解の問題です。
当初、制限時間を5秒に設定しかけましたが、問題を読み取る時間もあるので、20秒に訂正しました。
最後の問題(Q5)以外は、中学校、小学校レベルの問題だと考えています。
時間内に答えられなかったり、少しでも頭を傾げた方は落第です。
満点が取れなかった方は、大いに落胆、絶望し、猛省していただきたい。(私などは、ほぼ毎日絶望しています。^^;)
落胆と絶望が反省と、真の理解のきっかけとなると信じるからです。
私たちは文明の恩恵に浴して、日々生活しています。
しかし、文明の機器については、必ずしもメカニズムを理解していなくても使えます。
スマホ・タブレットのゲームは、猫ですら興じます。
今こそ、私たちは論理的に物事を考える姿勢が重要だと思うのです。
視覚から直接入る、幾何光学的課題は、格好の教材だと信じます。
くどいですが、屈折マトリックスは、2行2列の行列の右上の成分にその面パワー、その対角成分=0,後の2成分は1で、行列式=常に1です。
移行マトリックスは、2行2列の行列の左下の成分に、面間隔×(-1)、その対角成分=0,その他の成分は2つとも1で、これも行列式の値は1です。
従って、その要素行列を何個つないでも、積算した最終行列の行列式も常に1なのです。
なぜ、この事実に感動してくださる方がおられないのか、不思議でなりません。
どうか、スルーすることなく、今回の問題にトライしてみてください。
主点(主面)位置を図のように仮に設定します。実際の位置とは関係ありません。E,Fの算出後の正負で最終的に位置が決まります。この図に基いてH1,H2を基準にしたシステムマトリックスを考えると、以下のようになります。
中央の行列は、L1~Lnまでのシステムマトリックスです。各要素を特定していないので、具体的な数値は決まりませんが、上のように、反時計回りにABCDとしておきます。右上の成分Aが常にシステムのパワーとなっていることは以前にご説明した通りです。さらに、BD-AC=1であることは、全ての要素行列で共通です。
計算結果です。↑
ところで、一般的に、物平面と像平面を基点にしたシステムマトリックス(物像マトリックス)は、上の一般式になることが分かっています。Mは横倍率です。h’=Mhが成り立つためには、左下の成分は常に0になりますし、行列式の値は常に1ですから、対角成分=1/Mになるわけです。
H1とH2は、横倍率=+1になる物像平面ですから、M=1 を代入すれば、主点位置である E,F が算出できることになります。
B-AE=D-AF=1 から、
E=(B-1)/A ; F=(D-1)/A となるわけです。
(AEF-BF+C-DE=0)