New Helicoid Optimized for Binoscopes! / BINO用ヘリコイド開発!!

before: Pentax Helicoid extension tubes
after: New Matsumoto Original Helicoid optimized for Binocular use

Helicoid tubes and IPD-Crayford tubes, each has its merit and I have chosen one of them in the cases.

The main problems of the commercial helicoid tubes for camera parts are the lack of enough rididity and the end shape that needs to be processed to connect to other telescopic parts.

Now, I have successfully developed this new helicoid perfectly speciallized for binoscopic use.I can definitly say that it is more rigid than any other commercial helicoid tubes planned for camera parts.This is designed for the heavy use of binoscope back that will hold EMS and heavy oculars at a time.Both ends are tapered boss that will fit into the 50.8mm standard sleeves. This means it is easily used reversible on left or right EMS for the ergonomical hand operations.

目幅調整用の伸縮管としては、ヘリコイドとクレイフォードがあり、それぞれに長所があります。 小型のBINOで伸縮管の最短長を特に短くしたい場合や、気密性を重視する場合はヘリコイドが適しますし、またユーザーさんの好みによっては、大きなBINOでもヘリコイドを使用することもあります。 つまり、ヘリコイドにも捨てがたい長所があるのですが、残念なことに市販の短いヘリコイドは主としてカメラ関係のパーツ用を前提としているので、BINO用のような大きなモーメント加重は想定してなく、つねに剛性に不安がありました。 さらに末端形状も不都合なことが多く、その都度接続リング等を加工しないといけませんでした。(最近は主にクレイフォード式を採用して来た理由。)

この度試作に成功したヘリコイドは、最短長=わずか22mm(ストローク16mm)で、両端が2インチのテーパーボス(末端だけに該当リングを取り付けているのではなく、構造部のエンドがその形状になってる。)で、リバーシブルに2インチ挿入部に取り付くように出来ています。外径72mmで無理のない壁厚を確保しており、剛性も万全です。 (2インチのテーパーボスはEMSハウジングに嵌入するため、実質最短長=22mm)

(左右のヘリコイドを上下逆に使用する(リバーシブル)意義は、以前にもここでご紹介しましたが、左右のヘリコイドを両手で同時にねじる際に、自然な左右対称的な動きで行えることにあります。 仮に左右のヘリコイドを同向きにセットしますと、左右のヘリコイドを左右の手で同方向に回転させないといけないので、よく間違えますし、動作に違和感を覚えるものです。製作者の作業性として、ヘリコイドの両端が共通形状になっていることは大きなメリットがあるわけです。)

最短長=22mmということで、今後はより小型のBINOにまで、鏡筒固定方式が適用できることになりました。

後日追記:このBINO用ヘリコイドは、左右で逆ネジを用意しましたので、左右で天地を逆にして取り付ける必要はなくなりました。(ご自分でBINOを分解された際には、左右を取り違えると、製作者の意図に反することになります。^^;)

Test carving of the first LOGO / 最初のロゴの試し彫り

Above is the test carving of the first LOGO that I have turned over for a few months. Each of the outline represents “M” of Matsumoto and in total, that represents a Binoscope.

I have done the careful kernings on the first logo.

数ヶ月間考え抜いた、最初のロゴです。^^;

カーニングをして文字列を整えました。 (右端の写真は試しに塗料を入れたところ。実際には、黒アルマイトに 地金の白が浮かび上がる計算です。)

MAINTENANCE OF THE EMS MIRRORS / EMSミラーのメンテナンス

From top…..;

0. You can use blower spray to blow the dusts off on the mirror. But be careful not to blow the liquid of the spray on the mirrors.

通常の清掃には、エアーダスターをご使用ください。ただし、スプレー缶内の液がミラーにかからないように ご注意ください。 使い始めのスプレーや、缶を斜めにしたりすると、液が出やすいのでご注意ください。 また細い先ノズルがエアーと一緒に抜けて吹き飛ぶことがありますので、事前にその部分はセロテープで補強しておいてください。

1. When you mistakingly blow the liquid on the mirror, or you find the mirrors dirty after long period of time; wipe the mirror with tissue paper soaked in absolute ethanol.

スプレーの液を誤ってミラーにかけてしまった時や、長期間のご使用で、スプレーでは落ちない汚れが付着しましたら、 無水エタノールで浸したティッシュペーパーで拭いてください。無水エタノールは薬局で500mlが¥1,000少々で売っています。無水でないといけません。(素早く乾燥する必要があるため、エーテルを混合するとさらに良いが、エーテルは署名捺印が要り、注文となるでしょう。無水エタノールで十分です。)

2. Of course, you should take off the sleeve and the filter to access the second mirror.

当然ながら、第2ミラーにアクセスするために、まずはスリーブやフィルターを撤去してください。

3.and 4. If you don’t want to take the barrel off, you should at least unscrew off the entrance aperture. You need not a special tool to do it. You have only to hook your fingers to unscrew the aperture. When it is too tight to unscrew, you can use rubber sheet or something to protect your finger.

バレルの分解が億劫な方は、遮光環だけでも外してください。遮光環を外すのには特殊な工具は要りません。 ただ指をひっかけて矢印の方向(右ネジが緩む方向)に強くねじるだけです。 固くて緩まない場合は、ゴムシート等で 指を保護して行ってください。(必ず緩みます。)(左手にデジカメを持って撮影に苦労していたら、遮光環が裏返し になっていました。^^;)

5. Then soak the tisse paper in the absolute ethanol.

テッシュペーパーに無水エタノールを少し滲み込ませます。 別にこの容器を準備する必要はありません。

6. Don’t save on the paper. Never wipe more than one stroke. You should dispose the paper in each stroke. Of course, when you see any dust on the mirror, you should blow off the dust in advance of wiping.

But, you don’t have to be too nervous of hurting the mirror as long as the tissue paper is wet and new. The mirror surface has enough durability in wet-wiping because it is dielectlic over coated on the silver coatings.

この時、決してティッシュペーパーをケチらないこと。^^; 1ストローク拭いたら必ず捨てて、もう一回拭きたい場合は、新たなティッシュペーパーで同じことを繰り返してください。同じティッシュでの2度拭きは禁止です。

ただ、拭くこと(あくまで濡れ拭き)に関して、必要以上に神経質になる必要はありません。 EMSのミラーは、銀コートの上を誘電体膜で保護していますので、ここに書いたメンテくらいでミラー面が傷むことはありません。 むしろ、汚れを放置する方が有害であり、またせっかくの銀ミラーの性能が目一杯に発揮されません。

EMS-ULTIMA coming soon

EMS-ULTIMA
Evolution from aluminum to Silver

EMS-ULTIMA, equipped with enhanced silver coated mirrors, is coming soon. The graph above shows its extraordinary reflectivity.
Dark blue line shows the relfectivity of one reflection, and light blue line shows that of two times reflectons. Note that the scale of the bottom of table is not “zero”, but “75 percent”.

Now that EMS has achieved not only the diffraction limited resolution but also the practically total reflection of the incoming light, there will be no reason even for the most conservative users to dispense with EMS in their visual observation.
I believe it declares the advent of the new age of visual Telescopes.

It has been well known that Silver inherently has very high reflectivity through the visible spectrum except for the violet. But at the same time, it is also widely known that Silver degrades rapidly. So a Silver coating has not yet replaced aluminum in spite of its attractive features.

特殊増反射銀コート使用のEMS-ULTIMA(EMS-アルティマ)がもうすぐ誕生します。 上のグラフは、この度EMSへの応用に成功した特殊銀コートの反射率特性です。青のラインが 1回反射の曲線、水色が2回反射後の曲線です。どちらも入射角は60度の場合です。表枠のボトムの スケールはゼロ(0)でなく、75%であることにご注意ください。驚異的な反射率を達成していることが お分かりになると思います。

これにより、EMSは、望遠鏡の解像度を極限まで引き出すのみならず、明るさの最終的な利得についても 実質上の全反射をほぼ達成したと言えます。このことは、未だに倒立像や裏像に固執される保守的なマニアで さえも、EMSを排除する根拠を失うものであり、眼視用の望遠鏡のあり方に於ける新時代の到来を宣言するものである と確信します。

金属としての銀が紫付近を除けば、可視光線(及び赤外まで)の反射率が理想的に高いことは古くから 知られていますが、同時に、その面が化学的に耐久性に乏しいことも広く知られています。 そのため、 銀コートはアルミコートを駆逐するには、現在までには至っていません。

Not yet, but not “not from now on”.
Now, EMS-ULTIMA is breaking the age long stereotype as a past one. Recently developed enhanced silver coating has achieved super high reflectivity through the total visible spectrum including violet and enough durability allowing the continual use in the air at the same time, and I have developed the way to realize it on the mirror of EMS overcoming many difficulties.
The average reflectivity through the visible spectrum per one mirror is as high as 98.5 percent, and 97 percent of the incoming light is secured even after 2 times of reflections.
Following is the history and process I have traced before reaching this ultimate goal.

しかし、それは”現在までは・・”という意味であり、”これからも無理・・・”という意味ではありません。 EMS-ULTIMA(アルティマ)が完成したら、上記の常識は直ちに覆されて過去のものになるわけです。 この度開発された増反射銀コートは、紫を含む全可視域で極めて高い反射率を達成し、同時に過酷な環境 テストにパスした、非常に画期的なものなのです。その蒸着を具体的にEMSのミラーに応用するには、また それなりの困難もありましたが、それらも全てクリヤーしました。

可視光線全域の平均反射率=98.5%で、2回反射後でも97%を達成しています。 以下に、この究極の コートを選択するに至った経緯をご説明します。

Attaining erect image at the right angle viewing with only two reflections itself is unexcelled feature of the EMS that cannot be substituted by any other devices. Judging from the least possible number of the reflection,”2″ of EMS, compared with the traditional devices of 4 or 6 times reflections, originally I did not think it urgent to additionally improve the reflectivity of the mirrors. So, I had chosen the traditional mirror of the highest visible reflectivity with time proven durability, among those that were available at that time.
The answer was “enhanced aluminum coating” that is the aluminum coating over coated by some layers of dielectric to boost the reflectivity of the normal aluminum and at the same time to enhance the surface durability.

2回反射のみ(しかもノンダハ)で90度対空の正立像を達成しているEMSの特長は、他のいかなる手段 でも置き換えることは出来ません。 従来の手段で同じことをしようとすれば、4回~6回の反射を要求するので、EMSのミラーの反射率を特に 上げることの性急性を当初は感じていませんでした。 従って、当時、長年の実績もあって、性能が 安定して反射率も高い、増反射アルミ蒸着を選んだわけです。増反射アルミというのは、通常のアルミ蒸着の 上に誘電体膜をかけて、反射率のダメ押しと表面強化を兼ねたものです。

Dielectric coating is becoming popular recently for its alleged remarkable reflectivity. But, regrettably, recent investigations showed that it is not suited for the purpose of higher index-angle, such as 60 degrees of the EMS, and thicker light cone of brighter optics of F/5 or shorter that should contain rays of wide range in index-angles. Dielectric coating is very critical about index-angles and causes unwelcome polarization, and we should know that the perfect reflection is given only under the optimum condition originally intended in the plan. Even by customizing the layer thickness and increasing the number of coatings up to hundreds layers to overcome the degradation at the higher index-angle, unwelcome byproduct effect will balance out the merit of its original super high reflectivity, along with the inflation of the cost.
Concretely speaking, there is a tendency of shortening the width of the peak plateau of the reflectivity, peak shifting to the shorter wavelength direction (violet shift), and cause drastic down turn at the longer wavelength or the counterpart.

誘電体多層膜ミラーが、「驚異的に高い反射率・・」というキャッチと共に、最近人気が 高まっていますが、残念なことに、EMSのような高入射角度(60度前後)の光学系や、F5程度以下の 明るい光学系には不向きであることが分かって来ました。後者も、いろんな角度から鏡面に光線が入射 するからで、やはり誘電体膜の入射角依存性が高いことがその理由です。

誘電体多層膜は、設計意図に合致して使わないと、その能力が目一杯に発揮されないのです。むしろ、誘電体多層膜 は、特定の波長だけを反射させるレーザー関係の素子としてその本領を発揮するようで、ブロードバンド の要求が高いほど膜数が増え、同時に弊害も生じます。 具体的には、入射角が大きいほど、また反射域を広く取るほど困難になり、膜数が100層を越えたりして、 コストも非現実的に肥大し、強い偏光等の副産物も生じます。

I have done some experiments on three kinds of coatings to check which is the most excellent and suitable choice for my purpose. Seeing the results of the experiments will help you understand why I have chosen the enhanced silver coating as the ultimate one for my EMS.

 

私は、1.増反射アルミ(当方で使用している物)、2.誘電体多層膜、3.増反射銀コート、の 3種類のペアサンプルを使用していくつかの実験をしてみました。 その結果を見ていただけば、 私がなぜ増反射銀コートを究極の物として選んだかがご理解いただけるものと思います。

Test 1: multiple reflection experiment-1;

If you hold a pair of mirrors in such a way that two surfaces closely face each other, and obliquely poke into the gap, you will see the endless line of your eyes of multiple reflections.

テスト1:多重反射実験1;

2枚の同種類のミラーを近接して対面させ、隙間を斜めに覗くと、あなたの眼の連続反射像を 観察することが出来ます。それは、反射のしくみから、1,3,5,・・・と奇数回でカウントアップ して行きます。

enhanced aluminum

 

enhanced silver

The largest image of the camera lens is the direct, number 1, reflection image and next to left will count up to 5,7,9,….times reflected images. Left photo is enhanced aluminum and the right is enhanced silver. いずれの写真も、右端の大きなカメラレンズが1回反射の像で、3回反射の像はどちらかのミラー の陰になって撮影できず、5回反射以降の像が写っています。写真に番号を振りました。左に行くほど 反射回数が増えます。 可視光線平均としては95%の高反射率を誇る増反射アルミであっても、 赤い光線の落ち込みによって、カラーバランスがどんどん崩れて行くのが顕著です。 また、デジカメのレンズ部だけでなく、ミラーを保持する私の指先も写っていますが、 銀ミラーでは、その健康な血色が20回反射を超えてもまったく褪せないことは驚きに値します。

Test2: multiple reflection experiment-2;

Two mirrors faced to each other in such a way that forward end touch each other like a book slightly opened. The set stayed on my visiting card. In this experiment, dielectric one showed worst in contrast, though brightness was rather good. (direct image is marked by a red circle.)

テスト2:多重反射実験2;

矩形の(アルミだけは楕円形)ミラーをブック型にわずか開いたペアを、私の名刺の上に置きました。 いずれの写真も、赤い印がダイレクト(無反射)像です。この実験では、反射率の高さでは 銀と同等だった誘電体多層膜の像のコントラストが極端に悪いのが印象的でした。(紗がかかった見え方)

enhanced aluminum

 

dielectric

 

enhanced silver

Test3:transparency test on dielectric mirror;
テスト3:誘電体多層膜の透過テスト;

diode key-holder light

 

passing through dielectric mirror

 

You can even see through fluorescent tube

I found rays passing through dielectric coating. If it reflects 98 percent of the incoming light, 2 percent of the light seems to go through it. I thought it very unwelcome feature when I aim at the superb image contrast. The photo witnesses the fact of the diode flashlight passing through the dielectric mirror.

何気なく誘電体多層膜ミラーを屋内からかざして屋外を見たら、明るい屋外の景色が透けて見えたので 仰天しました。ミラーを大きく傾けた際に顕著であり、視線に垂直にしたら外の景色が見えなくなったので、入射角 依存の関係で仕方ないのだろうと思いましたが、ダイオードライトで試したら、垂直でも完全に光を 通していることが分かりました。先の実験でのコントラストの低下と関係があるかも分かりません。

蛍光管も透けて見えます。例えば、誘電体多層膜ミラーの場合は、98%反射したとすると、どうやら2%の光は ほぼ透過しているようです。かすかな迷光を嫌って遮光シートを貼るほどの天体望遠鏡の使用目的に対し、 わずかでも光が漏れることは気持ちの良いものではありません。

Comparison of Silver and aluminum Coatings

銀とアルミの比較

comparison of reflectivities

From top to bottom, dark blue line represents one reflection by enhanced silver, light blue that of two reflections, red line one reflection by enhanced aluminum, green line that of two reflections.

You will find not only the extraordinary high reflectivity of the enhanced silver, but also the remarkable flatness of the line. Through these experiments, I have studied the fact that the flatness of the line is as important as the highness of it.

(No image processing has been done on the above photos of experiments except for trimming. And I must add that the silver sample mirrors were almost two years old since deposition at the experiment.)

グラフは、上から、青が1回反射の増反射銀、水色が同2回反射後、赤が1回反射の増反射アルミ、緑が 同2回反射後です。

増反射銀は、単に反射率が高いだけでなく、曲線が極めてフラットであることに気付かれたと思います。 この一連の実験から、私は曲線のフラットさが、その高さと同じくらいに重要であることを知りました。中央(緑付近)が 極端に突出した比視感度曲線が有名ですが、視感度が低い領域は重要でないというのは逆で、そうであるからこそ、 強い刺激を眼に入れてやらないといけないようです。

それと、私たちはミラーの反射率について、どうしても望遠鏡メーカーや販売店の公称値を 鵜呑みにする傾向がありますが、このような簡単な実験により、かなり正確に実際を検証することが出来ました。
たとえば、反射率99%と言っても、反射率曲線のピークや視感度のピークに於ける数値を言っている場合や、 可視域全体の平均と言っても、可視域の幅の定義の仕方で、その表面的な成績は随分と異なるものになります。 まして、入射角依存のことなどは全く認識されていないのが通例のようです。
それと、何よりも大切なことは、単なる数値では表しにくい要素こそがより重要であるということです。 いくら明るくてもコントラストが悪くては淡い対象を 認識できないわけで、高いコントラストと両立した上での高反射率が求められるわけです。  正直申しまして、当初は、現在まで使用して来たアルミ増反射以上の物を他のミラーに認めたくない気持ちもありましたが、 1回反射の段階ですでに圧倒的に鮮やかな自分の顔色を映す銀ミラーに強い衝撃を受け、今まで 嘘の色を見て来たことに気付かされたわけです。
この度は、先入観を捨てていろんなミラーを実際に試してみたことで、究極の物に出会えたことを大変幸せに思っています。

(実験写真は、どれもトリミング以外の画像処理は一切やっておりません。 また、 実験の時点で、サンプルの銀ミラーは蒸着からすでに、ほぼ2年経過していたことも付け加えておきます。)

Acknowledgement

I musn’t forget to extend my sincerest appreciaton to some of my friends who have assisted me devotedly. They have given me a lot of information about the silver coating and even have done durability experiments.
Above all, their encouragement helped me a lot to keep up going wih this difficult project.

謝辞

特殊銀ミラーのEMSへの実現に関し、数名のEMSユーザーかつ友人の方々には、貴重な情報のご提供 や、ミラーの耐久性テスト等で大変お世話になりました。 また特に、心よりのお励ましをいただいたことで、 このプロジェクトを最後まで諦めないで続けられたことに、この場を借りて深くお礼申し上げます。(2009年8月4日)

Durability test on the Silver Coating

Adjustment of EMS-BINO / EMS-BINOの調整

Finished EMS-Binoscopes are free from the original adjustment, because they are carefully adjusted by Matsumoto before shipping. Especially those who had accepted the binoscope at my shop have proved that EMS-BINO will have no collimation problem by the vibration of the family car while carrying.

EMS-BINOはこちらで十分に調整して供給していますので、本来はユーザーサイドの初期調整は不要です。(X-Yノブでの使用中の微調整は別) 特にこちらで受け取られ、マイカーで遠路をお帰りの方は、車の振動くらいでは光軸が狂わないことも証明してくださっています。

Still, however, some of them have shown collimation problem by shipping. And in such a case, users should recover the collimation by themselves if you cannot afford to bring your troubled binoscope to my place. So, I reccommend you to carefully study at my website to master how to adjust the disordered binoscopes.

しかし、こちらで受け取られず、運送屋さん経由で納品させていただいた場合に、 たまに光軸の狂いや像の倒れを訴える方がおられます。こちらで説明を聞かれる方のBINOは狂わず、説明を 聞かれない方のBINOだけがどうして狂うのか、未だに謎ではありますが^^;、どちらにしましても、EMS-BINO の調整原理は極めて単純であり、復元も極めて簡単ですので、サイト内の説明をよくお読みになり、まさかの事態で 慌てないようにしていただければ幸いです。

Assume that the left 500yen coin is the image of the left telescope. In condition that the XY image adjuster has not lost the original position, I can judge the objective end of the right telescope is misalined in the left-down direction. In other wotds, you have only to pan the right scope in the same direction as the right 500yen coin.

上の写真は、左の500円硬貨が左眼の像と仮定します。EMSのXY調整ノブが原点を見失っていないとしますと、 右の鏡筒先が左下に振っている状態で、言い換えれば、右の500円硬貨が逃げているのと同じ方向に鏡筒先を 振れば左右の像を合致させることが出来るわけです。
さて、合致させたのが次の画像です。

This is the merged image by the above adjustment. You will still find something odd in the above image. Yes, the left 500yen coin leans to the left, and the rihgt one to the right. In other words, the left and right image of the vertical lines form the “V” shape. So, I call this tendency of the error “V error”. And the counterpart error I call is “/I”(lambda) error. Now, you know that collimation is one thing, and image inclination is quite another.

何だか変ですね。双眼視のコンポジット効果どころか、だぶったような像ですね。 最初の画像に返って見てください。左の500円硬貨は天方向が左に倒れ、右の硬貨は右に倒れていますね。 これを私は『V字傾向の像の倒れ』と言います。
像の倒れの調整は、光軸の平行調整とは別個に必要なのです。

Above image shows the inclination-adjusted and collimation wanted condition.

上の画像では、像の倒れが綺麗に修正されています。(修正方法はサイト内で反復説明しています。) (像の回転調整が光軸の平行調整とは全く独立的に行えることが、EMSの特筆すべき特長なのです。)

The image below shows the condition both collimation and inclinations are rightly corrected.

倒れが修正された状態で鏡筒を正しく振ると、下の画像のようになります。

この画像は、実際に半透明の2枚の画像を処理ソフトで重ねた物です。

像の回転は、EMSを構成する2つのユニット(望遠鏡側と眼側)の接続アングルの調整で自由自在 になります。
この事を先日ご説明した方が、「そんな事をしたら、EMSが曲がってしまうのでは??」と 心配なさっていました。^^; 左右のEMSについて、対称的に修正しますし、調整量は眼に見えないほどの微量なので、 心配無用なのです。
それから、最初にトライされる時は、常に極端に回して見て、回転方向を見極めることが 大切です。 像が回転する原理さえ分かれば、しめたものです。^^
(見ながら追い込むのは一人では 難しいので、目分量で動かしては仮固定してチェックし、追い込んでください。調整作業の結果、生じるEMS全体の倒れは後で 望遠鏡接続部を修正すれば良いのは言うまでもありません。)

要するに、EMS-BINOは復元調整自在なシステムであるということです。説明文を読むのがどうしても 面倒臭い方は、やはりこちらまでご足労いただく必要がありますね。^^;

(たまに遭遇する、説明が理解できない方のために、どうすれば理解していただけるのか、試行錯誤しています。 最終的な物とは言い難いので、この原案を取り敢えず日記に残しておくことにします。)

Here is the study-tool of the image-inclination adjustment.

同日追記: 重複になりますが、サイト内の該当説明を参照しない方が多いのでは?との危惧から、特別サービス^^; で、像の倒れの修正方法の新たな教材を用意しました。 下の画像をご覧ください。

1.Unscrew the three yellow arrowed set-screw, and the connection of the two units of the EMS is released, and you can rotate the units with each other. Take the most care when you unscrew the last screw so that the eye side units that is slightly blued will not rapidly drop down.

2.Rotate the whole blued part quite a bit in the same direction of that you want to rotate the image. Red arrow shows the rotating direction to correct the inclined image shown at this sample.

3.Of course, you should reversely do the same adjstment on the opposite scope. Don’t forget to screw the set-screws after finishing the adjustment, too.

機種により異なりますが、15cm-BINOの場合は、EMSの眼側ユニットは、目幅クレイフォードにジョイント用の オスのテーパー部を挿入し、黄色い矢印の先端辺りの3箇所のM3のセットビス(芋ネジ)で固定しています。 従って、そのネジを緩めれば、接続が解除されるわけです。もちろん、いきなり3つ共緩めて、脱落事故に 至らないように細心の注意が必要です。

さて、最後の3つ目のセットビスを慎重に緩めると、水色の紗をかけた部分全体が双方向に回転できる状態になります。 上のV字傾向の倒れを修正する場合は、赤い矢印の方向に回転させます。
つまり、像を回したい方向と、眼側ユニットを 回転させる方向が同じなのです。当然、鏡対称で、右のEMSの眼側ユニットも同じ調整をします。
微量とは言え、この調整の結果、アイピーススリーブは上が寄り添う形で相対的に傾斜することになります。 今度は、EMS全体を少し回して元の位置に戻せば良いのです。
左右共にこの修正を施し、像をチェックし、まだ不完全 であれば、また元の調整に戻り、追い込んで行きます。

文章にすれば面倒に聞こえますが、慣れれば、 回転量と像の回転角の関係も感覚的に理解できるようになり、長くても数分以内で完了する作業です。

双眼クイズも合わせてご覧ください。

65mm barrel / 65Φバレル

the left = standard 2inch barrel; the right = 65mm barrel
the sizes of the cases are the same.
左が2インチバレル(barrel)右が65φバレルです。
14mmの差とは思えません。
(ケースは、左右共同じです。(下の写真も同様))
65mm-barrel enables to accommodate the larger mirror.
バレルを太くする意義を図示しました。同じ収納ケースを用いながら、より大きな(長い)ミラーを収納でき、オフセットの自由度も 増します。(F値が小さいほどオフセットが必要)
単体用にも使用目的によっては意義がありますが、当面はF値が小さく、口径が大きなBINO用に採用する予定です。

一口メモ: 私の記憶では、国内ではオスの挿入部のことをスリープと言っていたような気がしますが、 アメリカ人の友人によると、二重のはめ合いのチューブがあれば、中の雄の方がバレル(barrel) で、外の雌の方がスリーブ(sleeve)なのだそうです。これは、カッターシャツの袖(sleeve)から腕(手首)が 出ているイメージから来ているのだそうです。

65mmφ運動に参加してください。

私がEMS-1の製品化を検討していた頃は、まだバレル(barrel)径が24.5mmφのアイピースが主流で、国産の通常の最大のアイピースが 36.4mmφ,P=1のネジ込みでした。 そして、31.7mmφのアメリカンサイズが普及し始めた頃でもありました。

それが数年以上前からは、2インチアイピースの使用が当然のことになっています。これは、マニアのRich-Field(広視界)指向の強さを良く表している 結果だと思います。

しかし、望遠鏡の接眼部の2インチスリーブへの対応は、総じて後手にに回り、現在ですら標準で対応していないメーカーもあり、 optionの2インチ用パーツについても、光路長ロスへの配慮(Low Profile)がほとんど見られなかったりします。

さて、全ての鏡筒が完璧に2インチ対応になれば十分かと言えば、そうではありません。2インチアイピースを単体で鏡筒にダイレクトに 接続する場合は良いのですが、大型のダイアゴナルプリズム等(天頂プリズム、ミラー)を介して2インチ アイピースを使用することを考えると、望遠鏡の接眼部の最大接続径は2インチより太いのが好ましいのです。

F5等の極端に短焦点で口径も大きい鏡筒に双眼仕様のEMSを接続する場合等は、さらにその要求が顕著に なります。
アイピース視野環から200mm程も中に 入った所で2インチ接続することもあり得る訳で、マツモトが光束の確保に腐心している次第です。

しかし、上記のように、現在までの望遠鏡業界の2インチ規格への保守的な対応から判断しまして、ただ傍観しているだけでは、より大径の接続 規格の一般化が早期に期待できないことは明らかです。

そこで、この度、65mmφバレルの創始を宣言させていただくことにしました。 雄の挿入規格を先に作ってしまおう、ということです。2月中旬には仕上がる予定です。この65mmφ挿入部が新規格の先駆けとなり、 市販の屈折鏡筒の接眼部の大型化とバックフォーカスの延長を促せたら幸せです。
具体的には、数百個単位の初期投資で計画を進めておりますので、なにとぞご理解、ご支援を賜りますよう、お願いいたします。

従来のEMSに65mmφバレルを採用しますと、より大きな第一ミラーを収納することが可能になります。また従来通りのミラーを収納する場合でも、内部スペースが 拡大することで、ミラーエッジの切削工程が大幅に削減でき、生産性の向上も期待でき、接続の強度と精度が増します。

単体望遠鏡用のEMS等については、光路長も短いので、当分の間は現行の2インチ径接続を踏襲しますが、 今後は必要に応じて、65mmφ挿入部を使用していくことになります。   まずは他項で少し触れています、SCHWARZ-BINOの第4世代の仕様に組み入れることになります。

接続径は、大きいほど良いのですが、望遠鏡の現状を現実的に見た上でのぎりぎりの妥協点としての結論が65mmφでした。 この径でも現状ではドローチューブ内径を越える場合が多いのですが、今後の鏡筒の進化に期待したいところです。   (2003年1月24日)

 

Adjustment of the connecting angle / EMSの接続アングルの調整

The photo is the customized EMS-L for the binocular use.

Put the EMS on the right-angle gauge. (A desktop and a wall can be a substitute.) You see the eye-side surface doesn’t touch the wall closely.(red arrow)

Then,unscrew the three set-screws (blue arrow in the photo) and fix the connecting angle untill the both sides of the EMS will touch the floor and the wall.
(The place of the three set-screws are different from the types of the EMS. Please consult me when you cannot identify the screws.)

直角面定規(机面と壁面等が代用できます)にEMSを載せます。
この写真では、接眼側の端面が垂直面に密着していません。
第2ミラー(接眼側)の3ヶ所のセットビス(青い矢印)を緩め、
両端面がそれぞれ水平面と垂直面に密着するようにします。

 

This photo is the finished stage of the upper adjustment.

Note the both sides of the EMS closely touch the gauge surfaces. At this stage, the image-inclination adjustment is almost perfect.

Even if some image-inclination should exist at this stage, You can adjust the image angle up to perfect by subtlely adjusting the viewing angle, for example, to shift the right angle toward 89dig. or 91dig.

This is one of the excellent features of the EMS.

Though the above adjusment is done by me, and the users will not have to do that by themselves, I explained that because I would like you to learn one of the remarkable features of the EMS.

上の調整後、両端面が定規に密着した状態です。
この時、両端面が直交し、同時に2つのミラーケース底面、即ち2枚のミラー面も直交しています。
この調整によって、左右の像の相対的な倒れの調整がほぼ完璧になります。
万一、この調整後に像の倒れが多少残る場合は、仰角の微調整で完璧まで追い込むことが出来ます。
これは、EMSの特筆すべき特徴の一つです。

この調整は、ユーザーの方にはほとんど不要ですが、
EMSの原理を理解していただく意味でご説明しました。

 

仰角の調整と左右の像の回転の関係

This is the diagram drawn to explain how the images rotate in accordance with the change of the viewing angle referred above.
“A” positon is that of the right angled, “C “position of the straight viewing.

上記調整で調整原点に復帰することが出来ます。
万一、調整原点に復帰しても、左右の像の相対的な倒れが完全に解消
しない場合は、左の図から仰角の調整と左右の像の回転の関係を学習
していただいた上で仰角を微調整してください。
画像は90度対空から直視までの変化を示していますが、90度を越え
る方向に仰角を増やして行けば、像が逆方向に回転することは、容易に
予想できるでしょう。
左右の像の相対的な倒れが、左右の像の天が開いたV字傾向なのか、
その逆の八字傾向なのかを見極めてから、その逆方向に補正するのです。
左右の像の片方だけが余計に倒れているように見えても、あくまで左右のアイピースの平行が保たれるようにして、視野の相対的なずれを補正することに徹してください。

BINO-QUIZ

( 1 )

left image                         right image

If you were to correct the trouble in the photo only by turning the component telescopes, which do you think is the right prescription?

A: Turn the left telescope a bit to the upper left, or the right telescope to the lower right.

B: Turn the left telescope a bit to the lower right, or the right telescope to the upper left.

( 2 )

Which do you think is right?

A: The inter ocular distance is incorrect.

B: Collimation is not correct.

C: Both A and B can be an answer, we cannot tell which is right in the photo.

( 3 )

Which do you think is right?

A: It’s not a trouble of collimation, but only the inter ocular distance is far too wide.

B: Collimation is incorrect. Turning the two telescopes to the converging way is one of the remedy.

C: Collimation is incorrect. Turning the two telescopes to the diverging way is one of the remedy.

( 4 )

Looking at the Jupiter, the further the satellite the wider the separation occurred while the Jupiter itself was merged. Which do you think is the most appropriate prescription? Winking the eyes, the lower of the left end satellite was proved to be the image of the left telescope.

A: The angles of the mirrors of the EMS seems to be in disorder so complicatedly that it would be better to leave it to Mr. Matsumoto.

B: To change the viewing angle of the EMS slightly to the 91degrees’ direction, keeping the eyepiece barrels parallely, will be a perfect remedy.

C: To change the viewing angle of the EMS slightly to the 89degrees’ direction, keeping the eyepiece barrels parallely, will be a perfect remedy.

 

The answer: 1=B, 2=B, 3=B, 4=B

BINO-QUIZ(双眼クイズ)

第1問

左鏡筒の像       右鏡筒の像

単体調整済みのEMSをセットした左右鏡筒を双眼に組み立て、左右のアイピースを別々に覗いたら、上図のように見えた。

これは、右鏡筒を基準に考えると、左鏡筒が( A )を向いているので、
左鏡筒を( B )向きに修正するか、右鏡筒を( C )向きに修正する必要がある。

A,B,Cに当てはまるものを以下より選択せよ。(同じ語を何度使用しても良い)

(右上、左上、右下、左下)

(初期調整時の鏡筒の平行出しの問題)

第2問

友達が自作した双眼望遠鏡を覗いたら、上図のように目標が左右にだぶって見えた。

上記の診断として最も正しいものを答えよ。

A:目幅が合っていないことが考えられる。
B:光軸が合っていないと考えられる。
C:上記A,Bのどちらも理由になり得るので、区別できない。

第3問

上記双眼望遠鏡を調整し、やっと像を合致させることが出来たが、
視野円が上図のように大きくダルマ状にずれてしまった。

上記の診断として最も正しいものを答えよ。

A:像が合致しているので、光軸は合っているが、目幅が大きく狂っている。

B:左右の光軸が、視線が寄り眼になる方向に狂っていて、これを鏡筒を振って直す場合は、左右の筒先(対物側)を開く方向に調整する必要がある。

C:左右の光軸が、視線が寄り眼になる方向に狂っていて、これを鏡筒を振って直す場合は、左右の筒先を閉じる方向に調整する必要がある。

D:左右の光軸が、視線が拡散する方向に狂っていて、これを鏡筒を振って直す場合は、左右の筒先を開く方向に調整する必要がある。

E:左右の光軸が、視線が拡散する方向に狂っていて、これを鏡筒を振って直す場合は、左右の筒先を閉じる方向に調整する必要がある。

1~3問の解答

第1問:A=左上 B=右下 C=左上
第2問:B
第3問:C

解説

ユーザーアジャストの双眼望遠鏡を使う上での最低限の常識を問題にしてみました。光学理論以前の常識ですが、アジャスタブルな双眼望遠鏡を作り始めて10年以上を経過し、基礎的な部分での誤解が誤った調整に繋がるケースが目立つことを痛感しましたので、このような問題を作成してみました。

第2問についてですが、これも90%以上の双眼初心者の方が誤解している問題です。
改めてペーパーテストにすれば、正解を出せても、現場では、特に左右の像が左右に拡散してだぶっていれば、大抵本能的に目幅を狭めてしまうものです。
”目幅が狂っていても光軸が合っていれば像はだぶらない。”という鉄則をまず覚えてください。 もう一度、「目幅と光軸は無関係!」です。

第3問については、左右の鏡筒の平行度が完璧であっても、観察者が輻輳した状態でEMSのX-Y調整をやってしまうと、同じ症状が表れるので、注意が必要です。
このような場合は、直ぐに器械を疑うのではなく、まずは自分自身の輻輳を疑ってください。
この状態で鏡筒をいじってしまって迷宮に入り込むケースがほとんどです。
ただし、無限遠で調整済みの双眼望遠鏡を至近距離に向けた時は、第3問の図の状態になるのが正常です。(adjustableな双眼は常に完璧な状態に   調整出来ますが・・・)(それと、最近は少なくなりましたが、視野環がずれた粗悪なアイピースでは、永久に視野円が重なりません。(偶然左右のアイピースが等量だけずれていれば別ですが))

調整の袋小路(迷路)に入ってしまうのは、必ずしも知識が足りないことその物ではなく、むしろ理解しているという思い込みが原因です。

第4問

木星を覗いたら、上図のように、本体はちゃんと合像するのに、 外の衛星ほど余計に上下に分離してしまった。
ウィンクをして見ると、最も左の衛星について、左鏡筒の像が下側にあることが判明した。

これについて、最も正しい診断を選択せよ。

A:これは、EMSの内蔵ミラーの角度が複雑に狂っているもので、ユーザーの手には負えないなので、MATSUMOTOに再調整を依頼すべきである。

B:左の像が右の像に対して反時計回りに回転しているので、左のEMS全体を左鏡筒の光軸の回りに少し反時計回りに回転させれば補正できる。アイピースの平行度が少し狂うが、実害は無い。

C:これは、”15cm双眼・・の使い方”で説明している、左右の像の天地方向が相対的にV字(逆八の字)傾向になっている例で、左右のEMSの対空角度を90度から91度の方向(対空角度が大きくなる方向)に微調整することで補正できる。
この時、左右のアイピーススリーブの平行度はキープすることが出来る。

D:基本的にはCの通りだが、左右の像の倒れのV字傾向が、左右対称的でなく、片方のみが余計に倒れているような場合は、像の倒れは修正できても、左右のアイピーススリーブの平行度はキープすることが出来ない。


第4問の解答
正解=C

解説

本問は、やや上級の問題です。 Bの方法でも像の回転を補正できますが、正しいのはCです。
調整量がわずかなので、最初はどちらに調整したら良いか迷うことと思いますが、こういう場合は、  常に極端なモデルを想定すると指針が分かります。”15cm双眼望遠鏡の使い方”の 中の”EMSの接続アングルの調整”の図を見ながらやれば簡単に出来るはずです。
左右の像の傾きが対称的でなくても、相対誤差を補正することのみに集中すれば良いのです。

この例に限らず、調整装置が連続的に双方向に機能し、誤差を逆傾向に持って来ることが出来れば、 必ずその中間に存在する正解に持って来ることが出来るということです。

ここでご注意いただきたいのは、未熟な観察者が極端に輻輳(寄り眼)した状態で右のEMSの X-Y調整を極端に操作して合像させますと、この状態が起きます。他項でも説明していますように、 このX-Y調整機構は微分的に成り立つもので、厳密には視野を回転させながら弧状に像を動かすので、 誤った使用は禁物です。

トラブルが発生した場合には、その診断に確信が持て、調整の指針が分かっていることを 前提にして調整してください。 指針が分からずにやみくもに各所をいじくり回すのは、 道に迷った人が、地図上の自分の位置が分からないのに動き回るのと同じです。
この調整で迷宮に入り込み、外国からEMS接眼部一式を再調整のために送り返して 来た方もありました。

Durability tests on the Silver Coating / ミラー反射膜耐久性試験

The coating maker guarantees durabilities of the new silver coating as passing the tests of high-humidity and high-temprature, over 90 degrees centigrade with 90 percent humidity, soaking in the solt water, and etc. This time, I will also show you the results of the durability tests; one of my friend, a researcher of progressive telescopes, voluntarily has done on the silver mirror with other comparative samples.

 この特殊銀コートは、蒸着メーカーがその耐久性を、高温高湿テスト (温度90℃湿度95%中、1,000時間)や塩水浸漬テスト等で保証している画期的な物ですが、 私の友人がこれとは別個に数々の実験をしてくれましたので、ご紹介したいと思います。

Test 1: Durability against car exhaust( durability against sulfur dioxide);

Watched the possible damage of a silver coated mirror sample attached at the vent of a car by adhesive tapes after driving 60 miles (100km).

result: After washing the soot the silver mirror restored its flawlessly beautiful surface.

To accelerate the reactions, I changed the test substance from gas to liquid after that.

テスト1:自動車の排気ガスへの耐久性(亜硫酸ガス耐性);

自動車の排気口に銀ミラー片を強力両面テープで張り付け100km程度走行後の劣化(の可能性)を観察。  (銀増反射膜のみ)

→結果 煤が付着するが、清掃後は全く劣化なし

→加速実験のため、これ以降は気体中でなく、液体中で実験した。

Test2: Tape pealing off test;

Adhesive power from weak to strong, I tested the mirror samples by musking tape, heavy-duty paper tape, then strong double-stick tape.
result: No pealing off was occured on each mirror, silver, aluminum-A, aluminum-B.

テスト2: テープ剥離試験;

銀の密着性確保が困難と聞いていたため、膜と基板ガラスとの密着性を試験。
粘着力の弱い順に、マスキングテープ、紙ガムテープ、強力両面テープを使用。
ミラー面にテープを張り付け、ゆっくり引き剥がし、膜剥がれがないかを試験。
(各テープで3回ずつ試行)

(銀増反射膜と アルミ増反射膜AとB)

→結果  銀・アルミA/Bとも剥離なし。

adhesive tapes used on the pealing tests

Test3:Durability against strong acid;

As the silver inherently has a tendency of going black under the sulfur dioxide, I tested the mirrors soaking in the spa water of hydrosulfuric acid.
Minami-Aso Jigoku-Onsen
(Jigoku-Spa in southern Aso; Spa of hydrosulfuric acid;PH=1.74 )
comp: the PH of our gastric acid is 1.5 to 2.
result: Every three of the sample mirrors survived flawless in 5 hours soaking.
Following table shows the resuls of more severe test of longer hours.

テスト3: 強酸耐性試験;

銀が硫化水素で黒ずむ性質があるため、硫化水素温泉水に浸漬して試験。

南阿蘇地獄温泉 硫化水素温泉 (PH1.74)
参考:胃液のPHは1.5~2
(銀増反射膜と アルミ増反射膜AとB)

test4:Durability against strong alkalies;

As aluminum is said to be erodent on the sodium hydrate, I have also tested the mirrors soaking in counterpart PH of 12.26, sodium hydrate solution.

result: After 14 hours of soaking, aluminum A had small holes, aluminum B caused almost total exfoliations.

テスト4:強アルカリ耐性試験;

アルミが水酸化ナトリウムに侵される性質があるため、  強酸とは逆の強アルカリPH12.26の水酸化ナトリウム溶液にミラーを入れ劣化を観察。
(銀増反射膜と アルミ増反射膜AとB)

Acknowledgement and Conclusion

I musn’t forget to extend my sincerest appreciaton to my friend who have kindly submitted these painstaking report to me. This will surely correct the stubbern stereotype against silvercoating and lead the astronomical world to the proper derection.

In conclusion, I can say with confidence that this enhanced silver coating more than meets the standard of durabilities of mirrors in the practical use of a telescope.

謝辞と結論

これらの大変骨の折れるテストを実行し、まとめてくださった私の友人(進歩的な 望遠鏡の研究者)に心より御礼申し上げます。

このリポートが従来技術の銀コートに対する根強い偏見を払拭し、天文界を正しい方向に 導いてくれることを確信しています。

このテスト結果により、この特殊銀コートが、天体望遠鏡用の光学素子としての耐久性の 基準を十分に満たしていることが確認できました。