少し前に、高2の娘が学校の数学で”虚数”の単元に入ったと言ったので、教科書を見てみた。 ところが、複素数平面や極形式、ド・モアブル の定理等の記載が全くないので、Webで調べてみたら、何と、2003年からの新課程で高校数学から消えていたことを知り、
愕然とした。
ベクトルでも、内積を教えるのに外積を教えない。ベクトル、複素数、三角関数、指数関数等は密接にからみ合い、それらをセットで 学習してこそ、その醍醐味が味わえるのに、誠に残念なことである。
e^iπ = -1 は、人類の至宝と言われる、オイラーの等式だ。
これは、e(自然対数の底;2.71828・・・)の iπ乗( i は i^2=-1で定義される虚数、πは円周率)=-1ということだ。
つまり、(2.71828・・・)の(i x 3.141592・・・)乗がマイナス1になるということ。
何で??
e^iθ をマクローリン展開すれば簡単に導くことが出来るのだが、f(θ)=e^iθ のグラフを描いてみれば、視覚的に 一目瞭然となる。
まず、e^iθ には i が含まれているので、複素平面上の1点に対応するはず。そしてf(0)=1 である。 θで微分してみると、f'(θ)=ie^iθ となり、絶対値は元のままで方向が位置ベクトルと直交していることが分かる。つまり、速度は大きさが 一定で位置ベクトルに常に直交しているということだ。
さらにその速度f'(θ)=ie^iθをθで微分してみると、加速度f”(θ)=-e^iθ となり、大きさは元のままで、向きが原点に 向かっている。 すなわち、これは半径1の円を描くことになるのだ。
つまり、e^iθ = cosθ + i sinθ (オイラーの公式)となり、θ に π を代入すれば、マイナス1になるのだ。 このオイラーの公式から、ド・モアブルは元より、三角関数のあらゆる公式も簡単に導出することが出来る。
一例を示そう。
e^i(α+β)=e^iα * e^iβ を オイラーの公式によって計算してみてください。
sin とcos の加法定理が一挙に導けて、笑いが止まらないはずです。
EMSは60度の偏角のミラー2個を適当なねじれ角で組み合わせたものですが、そのねじれ角θを解析してみたら、 何と、cosθ=1/3 という単純な数字で表されることが分かった。当人は仰天、感動したのであるが、今日までそれに関する コメントを誰からもいただけないのは、非常に残念なことだ。